Suppr超能文献

语义信息会影响基于面部的种族分类。

Semantic information influences race categorization from faces.

作者信息

Tskhay Konstantin O, Rule Nicholas O

机构信息

University of Toronto, Ontario, Canada

University of Toronto, Ontario, Canada.

出版信息

Pers Soc Psychol Bull. 2015 Jun;41(6):769-78. doi: 10.1177/0146167215579053. Epub 2015 Mar 25.

Abstract

It is well established that low-level visual features affect person categorization in a bottom-up fashion. Few studies have examined top-down influences, however, and have largely focused on how information recalled from memory or from motivation influences categorization. Here, we investigated how race categorizations are affected by the context in which targets are perceived by manipulating semantic information associated with the faces being categorized. We found that presenting faces that systematically varied in racial ambiguity with race-congruent (vs. incongruent) semantic labels shifted the threshold at which perceivers distinguished between racial groups. The semantic information offered by the labels therefore appeared to influence the categorization of race. These findings suggest that semantic information creates a context for the interpretation of perceptual cues during social categorization, highlighting an active role of top-down information in race perception.

摘要

众所周知,低层次视觉特征以自下而上的方式影响人物分类。然而,很少有研究考察自上而下的影响,并且主要集中在从记忆或动机中回忆的信息如何影响分类。在这里,我们通过操纵与被分类面孔相关的语义信息,研究了种族分类如何受到目标被感知的背景的影响。我们发现,呈现种族模糊性系统变化的面孔,并配以与种族一致(而非不一致)的语义标签,会改变感知者区分种族群体的阈值。因此,标签提供的语义信息似乎会影响种族分类。这些发现表明,语义信息为社会分类过程中感知线索的解释创造了一个背景,突出了自上而下的信息在种族感知中的积极作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验