Suppr超能文献

在表达神经毒性蛋白的酵母细胞中,泛素依赖性蛋白水解。

Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins.

机构信息

Institut für Zellbiologie, Universität Bayreuth Bayreuth, Germany.

出版信息

Front Mol Neurosci. 2015 Mar 12;8:8. doi: 10.3389/fnmol.2015.00008. eCollection 2015.

Abstract

Critically impaired protein degradation is discussed to contribute to neurodegenerative disorders, including Parkinson's, Huntington's, Alzheimer's, and motor neuron diseases. Misfolded, aggregated, or surplus proteins are efficiently degraded via distinct protein degradation pathways, including the ubiquitin-proteasome system, autophagy, and vesicular trafficking. These pathways are regulated by covalent modification of target proteins with the small protein ubiquitin and are evolutionary highly conserved from humans to yeast. The yeast Saccharomyces cerevisiae is an established model for deciphering mechanisms of protein degradation, and for the elucidation of pathways underlying programmed cell death. The expression of human neurotoxic proteins triggers cell death in yeast, with neurotoxic protein-specific differences. Therefore, yeast cell death models are suitable for analyzing the role of protein degradation pathways in modulating cell death upon expression of disease-causing proteins. This review summarizes which protein degradation pathways are affected in these yeast models, and how they are involved in the execution of cell death. I will discuss to which extent this mimics the situation in other neurotoxic models, and how this may contribute to a better understanding of human disorders.

摘要

严重受损的蛋白质降解被认为是导致神经退行性疾病的原因之一,包括帕金森病、亨廷顿病、阿尔茨海默病和运动神经元疾病。错误折叠、聚集或过剩的蛋白质可以通过不同的蛋白质降解途径有效降解,包括泛素-蛋白酶体系统、自噬和囊泡运输。这些途径受目标蛋白与小分子蛋白泛素的共价修饰调节,从人类到酵母都具有高度的进化保守性。酵母酿酒酵母是解析蛋白质降解机制和阐明程序性细胞死亡相关途径的成熟模型。人类神经毒性蛋白的表达会引发酵母细胞死亡,具有神经毒性蛋白特异性差异。因此,酵母细胞死亡模型适合分析在表达致病蛋白时蛋白质降解途径在调节细胞死亡中的作用。这篇综述总结了这些酵母模型中受影响的蛋白质降解途径,以及它们如何参与细胞死亡的执行。我将讨论这种情况在其他神经毒性模型中的程度,以及这如何有助于更好地理解人类疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf35/4357299/619e76c04280/fnmol-08-00008-g0001.jpg

相似文献

1
Ubiquitin-dependent proteolysis in yeast cells expressing neurotoxic proteins.
Front Mol Neurosci. 2015 Mar 12;8:8. doi: 10.3389/fnmol.2015.00008. eCollection 2015.
2
Mitochondrion-mediated cell death: dissecting yeast apoptosis for a better understanding of neurodegeneration.
Front Oncol. 2012 Nov 28;2:182. doi: 10.3389/fonc.2012.00182. eCollection 2012.
3
Receptor oligomerization guides pathway choice between proteasomal and autophagic degradation.
Nat Cell Biol. 2017 Jun;19(6):732-739. doi: 10.1038/ncb3531. Epub 2017 May 15.
6
The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration.
Aging Cell. 2015 Oct;14(5):715-24. doi: 10.1111/acel.12359. Epub 2015 Jun 5.
7
Dysregulation of Ubiquitin-Proteasome System in Neurodegenerative Diseases.
Front Aging Neurosci. 2016 Dec 15;8:303. doi: 10.3389/fnagi.2016.00303. eCollection 2016.
9
Protein Quality Control by Molecular Chaperones in Neurodegeneration.
Front Neurosci. 2017 Apr 6;11:185. doi: 10.3389/fnins.2017.00185. eCollection 2017.
10
Removing protein aggregates: the role of proteolysis in neurodegeneration.
Curr Med Chem. 2011;18(16):2459-76. doi: 10.2174/092986711795843236.

引用本文的文献

1
Glucose starvation induces tau phosphorylation leading to cellular stress response in fission yeast.
Arch Microbiol. 2025 May 19;207(7):148. doi: 10.1007/s00203-025-04350-y.
2
Unveiling microbial dynamics in terasi spontaneous fermentation: Insights into glutamate and GABA production.
Curr Res Food Sci. 2024 Dec 9;10:100950. doi: 10.1016/j.crfs.2024.100950. eCollection 2025.
4
Invertebrate genetic models of amyotrophic lateral sclerosis.
Front Mol Neurosci. 2024 Mar 4;17:1328578. doi: 10.3389/fnmol.2024.1328578. eCollection 2024.
6
Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD.
Int J Mol Sci. 2022 Oct 19;23(20):12508. doi: 10.3390/ijms232012508.
7
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors.
Biology (Basel). 2022 Jul 4;11(7):1009. doi: 10.3390/biology11071009.
8
A novel yeast-based screening system for potential compounds that can alleviate human α-synuclein toxicity.
J Appl Microbiol. 2022 Feb;132(2):1409-1421. doi: 10.1111/jam.15256. Epub 2021 Aug 31.
9
Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis.
Front Mol Neurosci. 2019 Feb 14;12:25. doi: 10.3389/fnmol.2019.00025. eCollection 2019.
10
Yeast Models of Prion-Like Proteins That Cause Amyotrophic Lateral Sclerosis Reveal Pathogenic Mechanisms.
Front Mol Neurosci. 2018 Dec 11;11:453. doi: 10.3389/fnmol.2018.00453. eCollection 2018.

本文引用的文献

1
Accumulation of Basic Amino Acids at Mitochondria Dictates the Cytotoxicity of Aberrant Ubiquitin.
Cell Rep. 2015 Mar 10;10(9):1557-1571. doi: 10.1016/j.celrep.2015.02.009. Epub 2015 Mar 5.
2
Tau aggregation and its interplay with amyloid-β.
Acta Neuropathol. 2015 Feb;129(2):207-20. doi: 10.1007/s00401-014-1371-2. Epub 2014 Dec 10.
3
Rsp5/Nedd4 is the main ubiquitin ligase that targets cytosolic misfolded proteins following heat stress.
Nat Cell Biol. 2014 Dec;16(12):1227-37. doi: 10.1038/ncb3054. Epub 2014 Oct 26.
4
A three-dimensional human neural cell culture model of Alzheimer's disease.
Nature. 2014 Nov 13;515(7526):274-8. doi: 10.1038/nature13800. Epub 2014 Oct 12.
5
Autophagy in Huntington disease and huntingtin in autophagy.
Trends Neurosci. 2015 Jan;38(1):26-35. doi: 10.1016/j.tins.2014.09.003. Epub 2014 Oct 2.
6
Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation.
Cell Metab. 2014 Oct 7;20(4):662-9. doi: 10.1016/j.cmet.2014.07.024. Epub 2014 Aug 28.
7
Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease.
Front Cell Neurosci. 2014 Aug 7;8:218. doi: 10.3389/fncel.2014.00218. eCollection 2014.
8
The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution.
Front Mol Neurosci. 2014 Jul 31;7:70. doi: 10.3389/fnmol.2014.00070. eCollection 2014.
10
Autophagic clearance of polyQ proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family.
Cell. 2014 Jul 31;158(3):549-63. doi: 10.1016/j.cell.2014.05.048. Epub 2014 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验