Torres-Sánchez Alejandro, Gómez-Gardeñes Jesús, Falo Fernando
Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain; Laboratori de Càlcul Numèric, Universitat de Politècnica de Catalunya, Barcelona, Spain.
Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.
PLoS Comput Biol. 2015 Mar 27;11(3):e1004129. doi: 10.1371/journal.pcbi.1004129. eCollection 2015 Mar.
Heterocyst differentiation in cyanobacteria filaments is one of the simplest examples of cellular differentiation and pattern formation in multicellular organisms. Despite of the many experimental studies addressing the evolution and sustainment of heterocyst patterns and the knowledge of the genetic circuit underlying the behavior of single cyanobacterium under nitrogen deprivation, there is still a theoretical gap connecting these two macroscopic and microscopic processes. As an attempt to shed light on this issue, here we explore heterocyst differentiation under the paradigm of systems biology. This framework allows us to formulate the essential dynamical ingredients of the genetic circuit of a single cyanobacterium into a set of differential equations describing the time evolution of the concentrations of the relevant molecular products. As a result, we are able to study the behavior of a single cyanobacterium under different external conditions, emulating nitrogen deprivation, and simulate the dynamics of cyanobacteria filaments by coupling their respective genetic circuits via molecular diffusion. These two ingredients allow us to understand the principles by which heterocyst patterns can be generated and sustained. In particular, our results point out that, by including both diffusion and noisy external conditions in the computational model, it is possible to reproduce the main features of the formation and sustainment of heterocyst patterns in cyanobacteria filaments as observed experimentally. Finally, we discuss the validity and possible improvements of the model.
蓝藻丝状体中的异形胞分化是多细胞生物中细胞分化和模式形成最简单的例子之一。尽管有许多实验研究探讨了异形胞模式的演变和维持,以及单个蓝藻在氮缺乏条件下行为背后的遗传回路知识,但在连接这两个宏观和微观过程方面仍存在理论差距。作为试图阐明这个问题的尝试,我们在此以系统生物学范式探索异形胞分化。这个框架使我们能够将单个蓝藻遗传回路的基本动态要素表述为一组描述相关分子产物浓度随时间演变的微分方程。结果,我们能够研究单个蓝藻在模拟氮缺乏的不同外部条件下的行为,并通过分子扩散耦合它们各自的遗传回路来模拟蓝藻丝状体的动态。这两个要素使我们能够理解异形胞模式得以产生和维持的原理。特别是,我们的结果指出,通过在计算模型中纳入扩散和有噪声的外部条件,可以重现实验观察到的蓝藻丝状体中异形胞模式形成和维持的主要特征。最后,我们讨论了该模型的有效性和可能的改进。