Suppr超能文献

具有多层次潜在协变量的多层次多维项目反应模型。

Multilevel multidimensional item response model with a multilevel latent covariate.

作者信息

Cho Sun-Joo, Bottge Brian

机构信息

Vanderbilt University, Nashville, Tennessee, USA.

University of Kentucky, Lexington, Kentucky, USA.

出版信息

Br J Math Stat Psychol. 2015 Nov;68(3):410-33. doi: 10.1111/bmsp.12051. Epub 2015 Mar 28.

Abstract

In a pre-test-post-test cluster randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre-test scores and other related covariates while estimating an intervention effect at post-test. In many applications in education, the total post-test and pre-test scores, ignoring measurement error, are used as response variable and covariate, respectively, to estimate the intervention effect. However, these test scores are frequently subject to measurement error, and statistical inferences based on the model ignoring measurement error can yield a biased estimate of the intervention effect. When multiple domains exist in test data, it is sometimes more informative to detect the intervention effect for each domain than for the entire test. This paper presents applications of the multilevel multidimensional item response model with measurement error adjustments in a response variable and a covariate to estimate the intervention effect for each domain.

摘要

在一项前后测整群随机试验中,常用于检测干预效果的方法之一是在估计后测的干预效果时控制前测分数及其他相关协变量。在教育领域的许多应用中,忽略测量误差的情况下,后测总分和前测总分分别用作响应变量和协变量来估计干预效果。然而,这些测试分数经常存在测量误差,基于忽略测量误差的模型进行统计推断可能会对干预效果产生有偏差的估计。当测试数据中存在多个领域时,有时检测每个领域的干预效果比检测整个测试的干预效果更具信息量。本文介绍了在响应变量和协变量中进行测量误差调整的多层次多维度项目反应模型在估计每个领域干预效果方面的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验