Suppr超能文献

基于中值先验约束的稀疏视角低剂量 CT 重建 TV 算法。

Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

机构信息

National Key Laboratory for Electronic Measurement Technology, North University of China, Taiyuan 030051, China; Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Taiyuan 030051, China.

East China University of Science & Technology, Shanghai, China; Laboratory of Image Science and Technology (LIST), Southeast University, Nanjing 210096, China.

出版信息

Comput Biol Med. 2015 May;60:117-31. doi: 10.1016/j.compbiomed.2015.03.003. Epub 2015 Mar 16.

Abstract

It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method.

摘要

众所周知,降低 X 射线管电流(mAs)或管电压(kVp),同时减少 X 射线视图的总数(稀疏视图)是在计算机断层扫描(CT)中实现低剂量的有效手段。然而,由于过度的量子噪声,传统的滤波反投影(FBP)通常会导致相关图像质量下降。虽然稀疏视图 CT 重建算法通过总变差(TV),在降低 X 射线管电流的扫描方案中,已经被证明能够显著减少辐射剂量,同时保持图像质量,但在重建图像中仍然存在明显的块状伪影。在这项研究中,为了解决块状伪影的问题,我们提出了一种中值先验约束 TV 正则化方法,通过引入与物体相关的辅助向量 m 来保持图像质量。具体来说,m 的近似作用是在每次迭代中,将一个物体的体素拉向自己的局部中值,旨在通过稀疏视图投影测量来提高低剂量图像质量。随后,采用交替优化算法来优化关联的目标函数。为了简单起见,我们将中值先验约束 TV 正则化称为“TV_MP”。数字体模和临床体模的实验结果表明,具有适当控制参数的 TV_MP 不仅可以确保重建图像具有更高的信噪比(SNR),而且与原始 TV 方法相比,其分辨率也更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验