Candini Andrea, Richter Nils, Convertino Domenica, Coletti Camilla, Balestro Franck, Wernsdorfer Wolfgang, Kläui Mathias, Affronte Marco
Centro S3, Istituto Nanoscienze - CNR, Via Campi 213/a, 41125 Modena, Italy.
Johannes Gutenberg Universität-Mainz, Institut für Physik, Staudinger Weg 7, 55128 Mainz, Germany ; Graduate School of Excellence Materials Science in Mainz (MAINZ), Staudinger Weg 9, 55128 Mainz, Germany.
Beilstein J Nanotechnol. 2015 Mar 11;6:711-9. doi: 10.3762/bjnano.6.72. eCollection 2015.
Graphene-based electrodes are very promising for molecular electronics and spintronics. Here we report a systematic characterization of the electroburning (EB) process, leading to the formation of nanometer-spaced gaps, on different types of few-layer graphene (namely mechanically exfoliated graphene on SiO2, graphene epitaxially grown on the C-face of SiC and turbostratic graphene discs deposited on SiO2) under air and vacuum conditions. The EB process is found to depend on both the graphene type and on the ambient conditions. For the mechanically exfoliated graphene, performing EB under vacuum leads to a higher yield of nanometer-gap formation than working in air. Conversely, for graphene on SiC the EB process is not successful under vacuum. Finally, the EB is possible with turbostratic graphene discs only after the creation of a constriction in the sample using lithographic patterning.
基于石墨烯的电极在分子电子学和自旋电子学领域极具潜力。在此,我们报告了在空气和真空条件下,对不同类型的少层石墨烯(即二氧化硅上的机械剥离石墨烯、碳化硅C面上外延生长的石墨烯以及沉积在二氧化硅上的乱层石墨烯圆盘)上的电烧蚀(EB)过程进行的系统表征,该过程会导致形成纳米间距的间隙。研究发现,EB过程既取决于石墨烯的类型,也取决于环境条件。对于机械剥离的石墨烯,在真空条件下进行EB比在空气中工作能产生更高的纳米间隙形成产率。相反,对于碳化硅上的石墨烯,在真空条件下EB过程并不成功。最后,只有在使用光刻图案化在样品中制造出缩颈后,才可能对乱层石墨烯圆盘进行EB。