Suppr超能文献

从电灼伤到升华:单层石墨烯电击穿过程中的衬底和环境影响。

From electroburning to sublimation: substrate and environmental effects in the electrical breakdown process of monolayer graphene.

机构信息

Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

Department of Physics, Budapest University of Technology and Economics and MTA-BME Condensed Matter Research Group, Budafoki ut 8, 1111 Budapest, Hungary.

出版信息

Nanoscale. 2017 Nov 16;9(44):17312-17317. doi: 10.1039/c7nr05348g.

Abstract

We report on the characterization of the electrical breakdown (EB) process for the formation of tunneling nanogaps in single-layer graphene. In particular, we investigated the role of oxygen in the breakdown process by varying the environmental conditions (vacuum and ambient conditions). We show that the density of oxygen molecules in the chamber is a crucial parameter that defines the physical breakdown process: at low density, the graphene lattice is sublimating, whereas at high density, the process involved is oxidation, independent of the substrate material. To estimate the activation energies of the two processes, we use a scheme which consists of applying voltage pulses across the junction during the breakdown. By systematically varying the voltage pulse length, and estimating the junction temperature from a 1D thermal model, we extract activation energies which are consistent with the sublimation of graphene under high vacuum and the electroburning process under air. Our study demonstrates that, in our system, a better control of the gap formation is achieved in the sublimation regime.

摘要

我们报告了在单层石墨烯中形成隧道纳米间隙的电击穿(EB)过程的特性。特别是,我们通过改变环境条件(真空和环境条件)来研究氧在击穿过程中的作用。我们表明,腔室中氧分子的密度是定义物理击穿过程的关键参数:在低密度下,石墨烯晶格升华,而在高密度下,所涉及的过程是氧化,与基底材料无关。为了估计这两个过程的激活能,我们使用了一种方案,即在击穿过程中通过结施加电压脉冲。通过系统地改变电压脉冲长度,并从一维热模型估计结温,我们提取了与高真空下石墨烯升华和空气中电烧蚀过程一致的激活能。我们的研究表明,在我们的系统中,在升华区域可以更好地控制间隙的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验