Suppr超能文献

一种多重过滤-多重包装方法用于基因选择和微阵列数据分类。

A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification.

机构信息

Department of Electrical and Electronic Engineering, Chow Yei Ching Building, University of Hong Kong, Pokfulam Road, Hong Kong.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2010 Jan-Mar;7(1):108-17. doi: 10.1109/TCBB.2008.46.

Abstract

Filters and wrappers are two prevailing approaches for gene selection in microarray data analysis. Filters make use of statistical properties of each gene to represent its discriminating power between different classes. The computation is fast but the predictions are inaccurate. Wrappers make use of a chosen classifier to select genes by maximizing classification accuracy, but the computation burden is formidable. Filters and wrappers have been combined in previous studies to maximize the classification accuracy for a chosen classifier with respect to a filtered set of genes. The drawback of this single-filter-single-wrapper (SFSW) approach is that the classification accuracy is dependent on the choice of specific filter and wrapper. In this paper, a multiple-filter-multiple-wrapper (MFMW) approach is proposed that makes use of multiple filters and multiple wrappers to improve the accuracy and robustness of the classification, and to identify potential biomarker genes. Experiments based on six benchmark data sets show that the MFMW approach outperforms SFSW models (generated by all combinations of filters and wrappers used in the corresponding MFMW model) in all cases and for all six data sets. Some of MFMW-selected genes have been confirmed to be biomarkers or contribute to the development of particular cancers by other studies.

摘要

过滤器和包装器是微阵列数据分析中用于基因选择的两种主要方法。过滤器利用每个基因的统计特性来表示其在不同类别之间的区分能力。计算速度快,但预测不准确。包装器利用选定的分类器通过最大化分类精度来选择基因,但计算负担很大。在以前的研究中,过滤器和包装器已经结合使用,以最大化选定分类器相对于过滤后的基因集的分类精度。这种单一过滤器-单一包装器 (SFSW) 方法的缺点是分类精度取决于特定过滤器和包装器的选择。本文提出了一种多过滤器-多包装器 (MFMW) 方法,该方法利用多个过滤器和多个包装器来提高分类的准确性和鲁棒性,并识别潜在的生物标志物基因。基于六个基准数据集的实验表明,MFMW 方法在所有情况下和所有六个数据集上都优于 SFSW 模型(由相应 MFMW 模型中使用的所有过滤器和包装器的组合生成)。MFMW 选择的一些基因已被其他研究证实是生物标志物或有助于特定癌症的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验