Brun Paola, Gobbo Serena, Caputi Valentina, Spagnol Lisa, Schirato Giulia, Pasqualin Matteo, Levorato Elia, Palù Giorgio, Giron Maria Cecilia, Castagliuolo Ignazio
Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
Mol Cell Neurosci. 2015 Sep;68:24-35. doi: 10.1016/j.mcn.2015.03.018. Epub 2015 Mar 27.
Gut microbiota-innate immunity axis is emerging as a key player to guarantee the structural and functional integrity of the enteric nervous system (ENS). Alterations in the composition of the gut microbiota, derangement in signaling of innate immune receptors such as Toll-like receptors (TLRs), and modifications in the neurochemical coding of the ENS have been associated with a variety of gastrointestinal disorders. Indeed, TLR2 activation by microbial products controls the ENS structure and regulates intestinal neuromuscular function. However, the cellular populations and the molecular mechanisms shaping the plasticity of enteric neurons in response to gut microbes are largely unexplored. In this study, smooth muscle cells (SMCs), enteric glial cells (EGCs) and macrophages/dendritic cells (MΦ/DCs) were isolated and cultured from the ileal longitudinal muscle layer of wild-type (WT) and Toll-like receptor-2 deficient (TLR2(-/-)) mice. Quantification of mRNA levels of neurotrophins at baseline and following stimulation with TLR ligands was performed by RT-PCR. To determine the role of neurotrophins in supporting the neuronal phenotype, we performed co-culture experiments of enteric neurons with the conditioned media of cells isolated from the longitudinal muscle layer of WT or TLR2(-/-) mice. The neuronal phenotype was investigated evaluating the expression of βIII-tubulin, HuC/D, and nNOS by immunocytochemistry. As detected by semi-quantitative RT-PCR, SMCs expressed mRNA coding TLR1-9. Among the tested cell populations, un-stimulated SMCs were the most prominent sources of neurotrophins. Stimulation with TLR2, TLR4, TLR5 and TLR9 ligands further increased Gdnf, Ngf, Bdnf and Lif mRNA levels in SMCs. Enteric neurons isolated from TLR2(-/-) mice exhibited smaller ganglia, fewer HuC/D(+ve) and nNOS(+ve) neurons and shorter βIII-tubulin axonal networks as compared to neurons cultured from WT mice. The co-culture with the conditioned media from WT-SMCs but not with those from WT-EGCs or WT-MΦ/DCs corrected the altered neuronal phenotype of TLR2(-/-) mice. Supplementation of TLR2(-/-) neuronal cultures with GDNF recapitulated the WT-SMC co-culture effect whereas the knockdown of GDNF expression in WT-SMCs using shRNA interference abolished the effect on TLR2(-/-) neurons. These data revealed that by exploiting the repertoire of TLRs to decode gut-microbial signals, intestinal SMCs elaborate a cocktail of neurotrophic factors that in turn supports neuronal phenotype. In this view, the SMCs represent an attractive target for novel therapeutic strategies.
肠道微生物群 - 固有免疫轴正逐渐成为保证肠神经系统(ENS)结构和功能完整性的关键因素。肠道微生物群组成的改变、诸如Toll样受体(TLR)等固有免疫受体信号传导的紊乱以及ENS神经化学编码的改变,都与多种胃肠道疾病有关。事实上,微生物产物激活TLR2可控制ENS结构并调节肠道神经肌肉功能。然而,响应肠道微生物而塑造肠神经元可塑性的细胞群体和分子机制在很大程度上尚未得到探索。在本研究中,从野生型(WT)和Toll样受体2缺陷型(TLR2(-/-))小鼠的回肠纵肌层中分离并培养平滑肌细胞(SMC)、肠胶质细胞(EGC)和巨噬细胞/树突状细胞(MΦ/DC)。通过RT-PCR对基础状态以及用TLR配体刺激后神经营养因子的mRNA水平进行定量。为了确定神经营养因子在支持神经元表型中的作用,我们用从WT或TLR2(-/-)小鼠纵肌层分离的细胞的条件培养基进行了肠神经元的共培养实验。通过免疫细胞化学评估βIII - 微管蛋白、HuC/D和nNOS的表达来研究神经元表型。通过半定量RT-PCR检测,SMC表达编码TLR1 - 9的mRNA。在测试的细胞群体中,未受刺激的SMC是神经营养因子最主要的来源。用TLR2、TLR4、TLR5和TLR9配体刺激进一步增加了SMC中Gdnf、Ngf、Bdnf和Lif的mRNA水平。与从WT小鼠培养的神经元相比,从TLR2(-/-)小鼠分离的肠神经元表现出更小的神经节、更少HuC/D(阳性)和nNOS(阳性)神经元以及更短的βIII - 微管蛋白轴突网络。与WT - SMC的条件培养基共培养可纠正TLR2(-/-)小鼠改变的神经元表型,但与WT - EGC或WT - MΦ/DC的条件培养基共培养则不能。用GDNF补充TLR2(-/-)神经元培养物可重现WT - SMC共培养的效果,而使用shRNA干扰敲低WT - SMC中GDNF的表达则消除了对TLR2(-/-)神经元的影响。这些数据表明,肠道SMC通过利用TLR库来解码肠道微生物信号,精心合成了一种神经营养因子混合物,进而支持神经元表型。从这个角度来看,SMC是新型治疗策略的一个有吸引力的靶点。