Filteau Marie, Diss Guillaume, Torres-Quiroz Francisco, Dubé Alexandre K, Schraffl Andrea, Bachmann Verena A, Gagnon-Arsenault Isabelle, Chrétien Andrée-Ève, Steunou Anne-Lise, Dionne Ugo, Côté Jacques, Bisson Nicolas, Stefan Eduard, Landry Christian R
Département de Biologie, The Quebec Network for Research on Protein Function, Structure, and Engineering, Institut de Biologie Intégrative et des Systèmes.
Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, A-6020 Innsbruck, Austria; and.
Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4501-6. doi: 10.1073/pnas.1409938112. Epub 2015 Mar 23.
Cellular processes and homeostasis control in eukaryotic cells is achieved by the action of regulatory proteins such as protein kinase A (PKA). Although the outbound signals from PKA directed to processes such as metabolism, growth, and aging have been well charted, what regulates this conserved regulator remains to be systematically identified to understand how it coordinates biological processes. Using a yeast PKA reporter assay, we identified genes that influence PKA activity by measuring protein-protein interactions between the regulatory and the two catalytic subunits of the PKA complex in 3,726 yeast genetic-deletion backgrounds grown on two carbon sources. Overall, nearly 500 genes were found to be connected directly or indirectly to PKA regulation, including 80 core regulators, denoting a wide diversity of signals regulating PKA, within and beyond the described upstream linear pathways. PKA regulators span multiple processes, including the antagonistic autophagy and methionine biosynthesis pathways. Our results converge toward mechanisms of PKA posttranslational regulation by lysine acetylation, which is conserved between yeast and humans and that, we show, regulates protein complex formation in mammals and carbohydrate storage and aging in yeast. Taken together, these results show that the extent of PKA input matches with its output, because this kinase receives information from upstream and downstream processes, and highlight how biological processes are interconnected and coordinated by PKA.
真核细胞中的细胞过程和稳态控制是通过蛋白激酶A(PKA)等调节蛋白的作用来实现的。尽管从PKA发出的指向代谢、生长和衰老等过程的输出信号已得到充分描绘,但调节这种保守调节因子的因素仍有待系统鉴定,以了解它如何协调生物过程。我们使用酵母PKA报告基因检测法,在以两种碳源生长的3726个酵母基因缺失背景中,通过测量PKA复合物的调节亚基和两个催化亚基之间的蛋白质-蛋白质相互作用,鉴定了影响PKA活性的基因。总体而言,发现近500个基因直接或间接与PKA调节相关,其中包括80个核心调节因子,这表明在所述上游线性途径之内和之外,调节PKA的信号具有广泛的多样性。PKA调节因子涉及多个过程,包括自噬和甲硫氨酸生物合成的拮抗途径。我们的研究结果趋向于赖氨酸乙酰化对PKA进行翻译后调节的机制,这种机制在酵母和人类之间是保守的,并且我们发现,它在哺乳动物中调节蛋白质复合物的形成,在酵母中调节碳水化合物储存和衰老。综上所述,这些结果表明PKA输入的程度与其输出相匹配,因为这种激酶从上游和下游过程接收信息,并突出了PKA如何将生物过程相互连接和协调。