Suppr超能文献

理解大气和海洋概率分布独特的偏态和重尾特征。

Understanding the distinctively skewed and heavy tailed character of atmospheric and oceanic probability distributions.

作者信息

Sardeshmukh Prashant D, Penland Cécile

机构信息

CIRES, University of Colorado, Boulder, Colorado 80309, USA.

NOAA/Earth System Research Laboratory, Boulder, Colorado 80305, USA.

出版信息

Chaos. 2015 Mar;25(3):036410. doi: 10.1063/1.4914169.

Abstract

The probability distributions of large-scale atmospheric and oceanic variables are generally skewed and heavy-tailed. We argue that their distinctive departures from Gaussianity arise fundamentally from the fact that in a quadratically nonlinear system with a quadratic invariant, the coupling coefficients between system components are not constant but depend linearly on the system state in a distinctive way. In particular, the skewness arises from a tendency of the system trajectory to linger near states of weak coupling. We show that the salient features of the observed non-Gaussianity can be captured in the simplest such nonlinear 2-component system. If the system is stochastically forced and linearly damped, with one component damped much more strongly than the other, then the strongly damped fast component becomes effectively decoupled from the weakly damped slow component, and its impact on the slow component can be approximated as a stochastic noise forcing plus an augmented nonlinear damping. In the limit of large time-scale separation, the nonlinear augmentation of the damping becomes small, and the noise forcing can be approximated as an additive noise plus a correlated additive and multiplicative noise (CAM noise) forcing. Much of the diversity of observed large-scale atmospheric and oceanic probability distributions can be interpreted in this minimal framework.

摘要

大规模大气和海洋变量的概率分布通常是偏态且具有厚尾性的。我们认为,它们与高斯分布的显著差异从根本上源于这样一个事实:在具有二次不变量的二次非线性系统中,系统各组分之间的耦合系数并非恒定不变,而是以一种独特的方式线性依赖于系统状态。特别地,偏态源于系统轨迹在弱耦合状态附近徘徊的趋势。我们表明,在最简单的这种双组分非线性系统中就能捕捉到观测到的非高斯性的显著特征。如果系统受到随机强迫并线性衰减,其中一个组分的衰减比另一个强烈得多,那么强衰减的快组分就会有效地与弱衰减的慢组分解耦,其对慢组分的影响可以近似为随机噪声强迫加上增强的非线性衰减。在大时间尺度分离的极限情况下,衰减的非线性增强变得很小,噪声强迫可以近似为加性噪声加上相关的加性和乘性噪声(CAM噪声)强迫。观测到的大规模大气和海洋概率分布的许多多样性都可以在这个最小框架内得到解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验