Ornelas-Lizcano J C, Guirado-López R A
Instituto de Física "Manuel Sandoval Vallarta," Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, México.
J Chem Phys. 2015 Mar 28;142(12):124311. doi: 10.1063/1.4916320.
We present extensive density functional theory (DFT) calculations dedicated to analyze the adsorption behavior of CO molecules on small AlxOy (±) clusters. Following the experimental results of Johnson et al. [J. Phys. Chem. A 112, 4732 (2008)], we consider structures having the bulk composition Al2O3, as well as smaller Al2O2 and Al2O units. Our electron affinity and total energy calculations are consistent with aluminum oxide clusters having two-dimensional rhombus-like structures. In addition, interconversion energy barriers between two- and one-dimensional atomic arrays are of the order of 1 eV, thus clearly defining the preferred isomers. Single CO adsorption on our charged AlxOy (±) clusters exhibits, in general, spontaneous oxygen transfer events leading to the production of CO2 in line with the experimental data. However, CO can also bind to both Al and O atoms of the clusters forming aluminum oxide complexes with a CO2 subunit. The vibrational spectra of AlxOy + CO2 provides well defined finger prints that may allow the identification of specific isomers. The AlxOy (+) clusters are more reactive than the anionic species and the final Al2O(+) + CO reaction can result in the production of atomic Al and carbon dioxide as observed from experiments. We underline the crucial role played by the local atomic environment, charge density distribution, and spin-multiplicity on the oxidation behavior of CO molecules. Finally, we analyze the importance of coadsorption and finite temperature effects by performing DFT Born-Oppenheimer molecular dynamics. Our calculations show that CO oxidation on AlxOy (+) clusters can be also promoted by the binding of additional CO species at 300 K, revealing the existence of fragmentation processes in line with the ones experimentally inferred.
我们展示了广泛的密度泛函理论(DFT)计算,致力于分析CO分子在小的AlxOy (±)团簇上的吸附行为。根据Johnson等人的实验结果[《物理化学杂志A》112, 4732 (2008)],我们考虑具有体相组成Al2O3以及更小的Al2O2和Al2O单元的结构。我们的电子亲和能和总能量计算与具有二维菱形结构的氧化铝团簇一致。此外,二维和一维原子阵列之间的相互转化能垒约为1 eV,从而清晰地定义了优选异构体。在我们带电的AlxOy (±)团簇上,单个CO吸附通常表现出自发的氧转移事件,导致产生符合实验数据的CO2。然而,CO也可以与团簇的Al和O原子结合,形成带有CO2亚基的氧化铝配合物。AlxOy + CO2的振动光谱提供了明确的指纹图谱,可能有助于识别特定的异构体。AlxOy (+)团簇比阴离子物种更具反应性,并且最终的Al2O(+) + CO反应可能导致如实验观察到的那样产生原子Al和二氧化碳。我们强调了局部原子环境、电荷密度分布和自旋多重性对CO分子氧化行为所起的关键作用。最后,我们通过进行DFT玻恩 - 奥本海默分子动力学分析了共吸附和有限温度效应的重要性。我们的计算表明,在300 K时,额外CO物种的结合也可以促进AlxOy (+)团簇上的CO氧化,揭示了与实验推断一致的碎片化过程的存在。