Suppr超能文献

电子激发态含能材料的初始分解机制:1,5'-联三唑、5,5'-联三唑和偶氮三唑。

Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5'-BT, 5,5'-BT, and AzTT.

作者信息

Yuan Bing, Yu Zijun, Bernstein Elliot R

机构信息

Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA.

出版信息

J Chem Phys. 2015 Mar 28;142(12):124315. doi: 10.1063/1.4916111.

Abstract

Decomposition of nitrogen-rich energetic materials 1,5'-BT, 5,5'-BT, and AzTT (1,5'-Bistetrazole, 5,5'-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N2 molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S1 molecules can non-adiabatically relax to their ground electronic states through (S1/S0)CI conical intersections. 1,5'-BT and 5,5'-BT materials have several (S1/S0)CI conical intersections between S1 and S0 states, related to different tetrazole ring opening positions, all of which lead to N2 product formation. The N2 product for AzTT is formed primarily by N-N bond rupture of the -N3 group. The observed rotational energy distributions for the N2 products are consistent with the final structures of the respective transition states for each molecule on its S0 potential energy surface. The theoretically derived vibrational temperature of the N2 product is high, which is similar to that found for energetic salts and molecules studied previously.

摘要

对富氮含能材料1,5'-BT、5,5'-BT和AzTT(分别为1,5'-双四唑、5,5'-双四唑和5-(5-叠氮基-(1或4)H-1,2,4-三唑-3-基)四唑)在电子态激发后的分解进行了实验和理论研究。在紫外激发后,观察到这三种材料的初始分解产物为N₂分子,其转动温度较低(<30 K)。在完全活性空间自洽场(CASSCF)水平上探索了这三种电子激发材料的初始分解机制。在CASSCF(12,8)/6-31G(d)水平上的势能面计算表明,锥形交叉在分解机制中起着至关重要的作用。电子激发的S₁分子可以通过(S₁/S₀)CI锥形交叉非绝热弛豫到其基态电子态。1,5'-BT和5,5'-BT材料在S₁和S₀态之间有几个与不同四唑环开环位置相关的(S₁/S₀)CI锥形交叉,所有这些都导致N₂产物的形成。AzTT的N₂产物主要由-N₃基团的N-N键断裂形成。观察到的N₂产物的转动能量分布与每个分子在其S₀势能面上相应过渡态的最终结构一致。理论推导的N₂产物的振动温度较高,这与先前研究的含能盐和分子的情况相似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验