Suppr超能文献

KCNJ10(Kir4.1)在皮质厚壁升支的基底外侧膜中表达。

KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb.

作者信息

Zhang Chengbiao, Wang Lijun, Su Xiao-Tong, Lin Dao-Hong, Wang Wen-Hui

机构信息

Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China; and Department of Pharmacology, New York Medical College, Valhalla, New York.

Department of Pharmacology, New York Medical College, Valhalla, New York.

出版信息

Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1288-96. doi: 10.1152/ajprenal.00687.2014. Epub 2015 Apr 1.

Abstract

The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10(+/+) wild-type (WT) and Kcnj10(-/-) knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.

摘要

本研究的目的是利用Kcnj10(+/+)野生型(WT)和Kcnj10(-/-)基因敲除(KO)小鼠,研究Kcnj10(Kir.4.1)在皮质厚升支(cTAL)基底外侧钾离子电导形成中的作用。膜片钳实验在cTAL的基底外侧膜中检测到一个40 pS和一个80 pS的钾通道。此外,在靠近远曲小管的cTAL后半部分发现40 pS钾通道的概率显著高于起始部分。免疫染色显示在cTAL的基底外侧膜中检测到Kcnj10染色,但表达并不均匀分布。Kcnj10的缺失完全消除了40 pS钾通道,但未消除80 pS钾通道,这表明Kcnj10在形成cTAL的40 pS钾通道中发挥作用。此外,Kcnj10的缺失增加了在cTAL中发现80 pS钾通道的概率,尤其是在cTAL的后半部分。由于基因敲除小鼠中80 pS钾通道的通道开放概率与野生型小鼠相似,80 pS钾通道的增加可能是通过增加钾通道数量实现的。全细胞记录进一步显示,在浴液中含5 mM钾、电极内液含140 mM钾的条件下,野生型和基因敲除小鼠测得的钾离子反转电位相同。此外,蛋白质免疫印迹和免疫染色显示,Kcnj10的缺失不影响钠-钾-氯协同转运蛋白2(NKCC2)的表达。我们得出结论,Kir.4.1在cTAL的基底外侧膜中表达,并且Kir.4.1的缺失对cTAL的膜电位和NKCC2表达没有显著影响。

相似文献

1
KCNJ10 (Kir4.1) is expressed in the basolateral membrane of the cortical thick ascending limb.
Am J Physiol Renal Physiol. 2015 Jun 1;308(11):F1288-96. doi: 10.1152/ajprenal.00687.2014. Epub 2015 Apr 1.
2
Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F985-93. doi: 10.1152/ajprenal.00584.2015. Epub 2016 Feb 17.
3
KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1).
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11864-9. doi: 10.1073/pnas.1411705111. Epub 2014 Jul 28.
5
Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport.
J Am Soc Nephrol. 2015 Nov;26(11):2678-90. doi: 10.1681/ASN.2014070658. Epub 2015 Apr 6.
6
Deletion of renal Nedd4-2 abolishes the effect of high K intake on Kir4.1/Kir5.1 and NCC activity in the distal convoluted tubule.
Am J Physiol Renal Physiol. 2021 Jul 1;321(1):F1-F11. doi: 10.1152/ajprenal.00072.2021. Epub 2021 May 24.
8
Role and mechanisms of regulation of the basolateral K 4.1/K 5.1K channels in the distal tubules.
Acta Physiol (Oxf). 2017 Jan;219(1):260-273. doi: 10.1111/apha.12703. Epub 2016 May 20.
10
Bradykinin Stimulates Renal Na and K Excretion by Inhibiting the K Channel (Kir4.1) in the Distal Convoluted Tubule.
Hypertension. 2018 Aug;72(2):361-369. doi: 10.1161/HYPERTENSIONAHA.118.11070. Epub 2018 Jun 18.

引用本文的文献

1
Distinct cell types along thick ascending limb express pathways for monovalent and divalent cation transport.
JCI Insight. 2025 Jun 5;10(13). doi: 10.1172/jci.insight.190992. eCollection 2025 Jul 8.
2
Characterization of ROMK cellular heterogeneity along the mouse kidney thick ascending limb.
Pflugers Arch. 2025 Jun;477(6):841-856. doi: 10.1007/s00424-025-03086-4. Epub 2025 May 13.
4
Role of calcineurin in regulating renal potassium (K) excretion: Mechanisms of calcineurin inhibitor-induced hyperkalemia.
Acta Physiol (Oxf). 2024 Aug;240(8):e14189. doi: 10.1111/apha.14189. Epub 2024 Jun 11.
5
mTORc2 in Distal Convoluted Tubule and Renal K + Excretion during High Dietary K + Intake.
J Am Soc Nephrol. 2024 May 24;35(9):1149-63. doi: 10.1681/ASN.0000000000000406.
7
Inwardly rectifying K channels 4.1 and 5.1 (Kir4.1/Kir5.1) in the renal distal nephron.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C277-C288. doi: 10.1152/ajpcell.00096.2022. Epub 2022 Jun 27.
8
EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies.
Front Physiol. 2022 Mar 15;13:852674. doi: 10.3389/fphys.2022.852674. eCollection 2022.

本文引用的文献

1
Caveolin-1 Deficiency Inhibits the Basolateral K+ Channels in the Distal Convoluted Tubule and Impairs Renal K+ and Mg2+ Transport.
J Am Soc Nephrol. 2015 Nov;26(11):2678-90. doi: 10.1681/ASN.2014070658. Epub 2015 Apr 6.
2
KCNJ10 determines the expression of the apical Na-Cl cotransporter (NCC) in the early distal convoluted tubule (DCT1).
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11864-9. doi: 10.1073/pnas.1411705111. Epub 2014 Jul 28.
3
Chloride sensing by WNK1 involves inhibition of autophosphorylation.
Sci Signal. 2014 May 6;7(324):ra41. doi: 10.1126/scisignal.2005050.
5
Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10361-6. doi: 10.1073/pnas.1101400108. Epub 2011 Jun 1.
6
The salt-wasting phenotype of EAST syndrome, a disease with multifaceted symptoms linked to the KCNJ10 K+ channel.
Pflugers Arch. 2011 Apr;461(4):423-35. doi: 10.1007/s00424-010-0915-0. Epub 2011 Jan 11.
7
KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function.
Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14490-5. doi: 10.1073/pnas.1003072107. Epub 2010 Jul 22.
8
Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations.
N Engl J Med. 2009 May 7;360(19):1960-70. doi: 10.1056/NEJMoa0810276.
9
Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5842-7. doi: 10.1073/pnas.0901749106. Epub 2009 Mar 16.
10
Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway.
Proc Natl Acad Sci U S A. 2009 Mar 17;106(11):4384-9. doi: 10.1073/pnas.0813238106. Epub 2009 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验