Suppr超能文献

十二指肠细胞色素b(DCYTB)在铁代谢中的作用:功能与调控的最新进展

Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation.

作者信息

Lane Darius J R, Bae Dong-Hun, Merlot Angelica M, Sahni Sumit, Richardson Des R

机构信息

Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Nutrients. 2015 Mar 31;7(4):2274-96. doi: 10.3390/nu7042274.

Abstract

Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB); may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent "IRP1-HIF2α axis"; DCYTB and ascorbate in relation to iron metabolism.

摘要

铁和抗坏血酸是哺乳动物系统中至关重要的细胞成分。铁的大量需求发生在红细胞生成过程中,这会导致含血红蛋白的红细胞生成。此外,铁和抗坏血酸在众多代谢反应中作为辅助因子发挥作用。铁稳态在吸收水平上受到控制,而非排泄。越来越多的证据有力地表明,除了膳食抗坏血酸能增强肠道中非血红素铁的吸收这一已知能力外,抗坏血酸还调节铁稳态。抗坏血酸在膳食铁吸收中的作用不仅限于膳食抗坏血酸对非血红素铁的直接化学还原。在其他活动中,肠细胞内的抗坏血酸似乎参与向一类跨膜氧化还原酶(即细胞色素b561类酶)提供电子。这些血红蛋白在膜的一侧氧化抗坏血酸池,以便在膜的另一侧还原电子受体(如非血红素铁)。该家族的一个成员,十二指肠细胞色素b(DCYTB),可能在肠道中非血红素铁被亚铁转运蛋白摄取之前,在抗坏血酸依赖性还原过程中发挥重要作用。本综述讨论了细胞铁稳态、新兴的“IRP1-HIF2α轴”、DCYTB和抗坏血酸在铁代谢方面的新出现的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5888/4425144/f96b9879f5a1/nutrients-07-02274-g001.jpg

相似文献

1
Duodenal cytochrome b (DCYTB) in iron metabolism: an update on function and regulation.
Nutrients. 2015 Mar 31;7(4):2274-96. doi: 10.3390/nu7042274.
2
Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism.
Biochim Biophys Acta. 2008 Mar;1777(3):260-8. doi: 10.1016/j.bbabio.2007.12.001. Epub 2007 Dec 23.
3
Modulation of Dcytb (Cybrd 1) expression and function by iron, dehydroascorbate and Hif-2α in cultured cells.
Biochim Biophys Acta. 2014 Jan;1840(1):106-12. doi: 10.1016/j.bbagen.2013.08.012. Epub 2013 Aug 24.
4
Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism.
Blood Cells Mol Dis. 2002 Nov-Dec;29(3):356-60. doi: 10.1006/bcmd.2002.0574.
5
The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!
Free Radic Biol Med. 2014 Oct;75:69-83. doi: 10.1016/j.freeradbiomed.2014.07.007. Epub 2014 Jul 15.
6
Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells.
Am J Physiol Lung Cell Mol Physiol. 2006 Aug;291(2):L272-80. doi: 10.1152/ajplung.00342.2005. Epub 2006 Mar 1.
7
The role of Dcytb in iron metabolism: an update.
Biochem Soc Trans. 2008 Dec;36(Pt 6):1239-41. doi: 10.1042/BST0361239.
8
Duodenal cytochrome b (Cybrd 1) and HIF-2α expression during acute hypoxic exposure in mice.
Eur J Nutr. 2011 Dec;50(8):699-704. doi: 10.1007/s00394-011-0175-6. Epub 2011 Feb 27.

引用本文的文献

1
Dietary Iron Absorption: Biochemical and Nutritional Aspects.
Adv Exp Med Biol. 2025;1480:75-87. doi: 10.1007/978-3-031-92033-2_6.
2
Dietary Iron Intake and Obesity-related Diseases.
Curr Diab Rep. 2025 Jun 3;25(1):34. doi: 10.1007/s11892-025-01589-z.
3
Ferroptosis: the potential key roles in idiopathic pulmonary fibrosis.
Eur J Med Res. 2025 Apr 28;30(1):341. doi: 10.1186/s40001-025-02623-2.
4
Sex and Gender Differences in Iron Chelation.
Biomedicines. 2024 Dec 18;12(12):2885. doi: 10.3390/biomedicines12122885.
5
Decoding ferroptosis: transforming orthopedic disease management.
Front Pharmacol. 2024 Dec 6;15:1509172. doi: 10.3389/fphar.2024.1509172. eCollection 2024.
6
Characterization of serum proteomic and inflammatory profiling at early stage of iron deficiency in weaned piglets.
Anim Nutr. 2024 Apr 16;18:380-389. doi: 10.1016/j.aninu.2024.04.004. eCollection 2024 Sep.
10
Scientific opinion on the tolerable upper intake level for iron.
EFSA J. 2024 Jun 12;22(6):e8819. doi: 10.2903/j.efsa.2024.8819. eCollection 2024 Jun.

本文引用的文献

1
Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease.
Biochim Biophys Acta. 2015 May;1853(5):1130-44. doi: 10.1016/j.bbamcr.2015.01.021. Epub 2015 Feb 4.
2
The IRP/IRE system in vivo: insights from mouse models.
Front Pharmacol. 2014 Jul 28;5:176. doi: 10.3389/fphar.2014.00176. eCollection 2014.
3
Special delivery: distributing iron in the cytosol of mammalian cells.
Front Pharmacol. 2014 Jul 22;5:173. doi: 10.3389/fphar.2014.00173. eCollection 2014.
4
The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!
Free Radic Biol Med. 2014 Oct;75:69-83. doi: 10.1016/j.freeradbiomed.2014.07.007. Epub 2014 Jul 15.
5
Mechanistic and regulatory aspects of intestinal iron absorption.
Am J Physiol Gastrointest Liver Physiol. 2014 Aug 15;307(4):G397-409. doi: 10.1152/ajpgi.00348.2013. Epub 2014 Jul 3.
6
The physiological functions of iron regulatory proteins in iron homeostasis - an update.
Front Pharmacol. 2014 Jun 13;5:124. doi: 10.3389/fphar.2014.00124. eCollection 2014.
7
Molecular liaisons between erythropoiesis and iron metabolism.
Blood. 2014 Jul 24;124(4):479-82. doi: 10.1182/blood-2014-05-516252. Epub 2014 May 29.
9
Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1813-8. doi: 10.1073/pnas.1323931111. Epub 2014 Jan 21.
10
How are cytochrome b561 electron currents controlled by membrane voltage and substrate availability?
Antioxid Redox Signal. 2014 Jul 20;21(3):384-91. doi: 10.1089/ars.2013.5809. Epub 2014 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验