Stötzel C, Kurland H-D, Grabow J, Müller F A
Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany.
Nanoscale. 2015 May 7;7(17):7734-44. doi: 10.1039/c5nr00845j.
Spherical, softly agglomerated and superparamagnetic nanoparticles (NPs) consisting of maghemite (γ-Fe2O3) and amorphous silica (SiO2) were prepared by CO2 laser co-vaporization (CoLAVA) of hematite powder (α-Fe2O3) and quartz sand (SiO2). The α-Fe2O3 portion of the homogeneous starting mixtures was gradually increased (15 mass%-95 mass%). It was found that (i) with increasing iron oxide content the NPs' morphology changes from a nanoscale SiO2 matrix with multiple γ-Fe2O3 inclusions to Janus NPs consisting of a γ-Fe2O3 and a SiO2 hemisphere to γ-Fe2O3 NPs each carrying one small SiO2 lens on its surface, (ii) the multiple γ-Fe2O3 inclusions accumulate at the NPs' inner surfaces, and (iii) all composite NPs are covered by a thin layer of amorphous SiO2. These morphological characteristics are attributed to (i) the phase segregation of iron oxide and silica within the condensed Fe2O3-SiO2 droplets, (ii) the temperature gradient within these droplets which arises during rapid cooling in the CoLAVA process, and (iii) the significantly lower surface energy of silica when compared to iron oxide. The proposed growth mechanism of these Fe2O3-SiO2 composite NPs during gas phase condensation can be transferred to other systems comprising a glass-network former and another component that is insoluble in the regarding glass. Thus, our model will facilitate the development of novel functional composite NPs for applications in biomedicine, optics, electronics, or catalysis.
通过对赤铁矿粉末(α-Fe2O3)和石英砂(SiO2)进行二氧化碳激光共蒸发(CoLAVA),制备了由磁赤铁矿(γ-Fe2O3)和无定形二氧化硅(SiO2)组成的球形、软团聚且超顺磁性的纳米颗粒(NPs)。均匀起始混合物中α-Fe2O3的比例逐渐增加(15质量%-95质量%)。研究发现:(i)随着氧化铁含量的增加,纳米颗粒的形态从具有多个γ-Fe2O3内含物的纳米级SiO2基质转变为由γ-Fe2O3和SiO2半球组成的双面纳米颗粒,再到每个表面带有一个小SiO2透镜的γ-Fe2O3纳米颗粒;(ii)多个γ-Fe2O3内含物在纳米颗粒的内表面聚集;(iii)所有复合纳米颗粒都被一层无定形SiO2覆盖。这些形态特征归因于:(i)在冷凝的Fe2O3-SiO2液滴中铁氧化物和二氧化硅的相分离;(ii)在CoLAVA过程中快速冷却期间这些液滴内产生的温度梯度;(iii)与铁氧化物相比,二氧化硅的表面能显著更低。所提出的这些Fe2O3-SiO2复合纳米颗粒在气相冷凝过程中的生长机制可以转移到其他包含玻璃网络形成剂和另一种不溶于相关玻璃的组分的体系中。因此,我们的模型将有助于开发用于生物医学、光学、电子或催化应用的新型功能复合纳米颗粒。