Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai-400005, India.
Central Laser Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX10 0QX, United Kingdom.
Phys Rev Lett. 2015 Mar 20;114(11):115001. doi: 10.1103/PhysRevLett.114.115001. Epub 2015 Mar 17.
We present a hitherto unobserved facet of hydrodynamics, namely the generation of an ultrahigh frequency acoustic disturbance in the terahertz frequency range, whose origins are purely hydrodynamic in nature. The disturbance is caused by differential flow velocities down a density gradient in a plasma created by a 30 fs, 800 nm high-intensity laser (∼5×10(16) W/cm(2)). The picosecond scale observations enable us to capture these high frequency oscillations (1.9±0.6 THz) which are generated as a consequence of the rapid heating of the medium by the laser. Adoption of two complementary techniques, namely pump-probe reflectometry and pump-probe Doppler spectrometry provides unambiguous identification of this terahertz acoustic disturbance. Hydrodynamic simulations well reproduce the observations, offering insight into this process.
我们展示了一种迄今为止尚未被观察到的流体动力学现象,即在等离子体中由于密度梯度产生的超高频声扰动,其起源纯粹是流体动力学性质的。这种扰动是由 30fs、800nm 高强度激光(约 5×10(16) W/cm(2))产生的差分流速引起的。皮秒级的观测使我们能够捕捉到这些高频振荡(1.9±0.6 THz),它们是激光快速加热介质的结果。采用两种互补技术,即泵浦-探测反射率和泵浦-探测多普勒光谱法,可明确识别这种太赫兹声扰动。流体动力学模拟很好地再现了这些观测结果,为这一过程提供了深入的了解。