Tang Yiting, Liu Lan, Sheng Ming, Xiong Kai, Huang Lei, Gao Qian, Wei Jingliang, Wu Tianwen, Yang Shulin, Liu Honglin, Mu Yulian, Li Kui
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Exp Cell Res. 2015 Jun 10;334(2):310-22. doi: 10.1016/j.yexcr.2015.03.018. Epub 2015 Mar 31.
Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1(-/-) MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1(-/-) MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1(-/-) MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs.
间充质干细胞(MSCs)是最初在骨髓(BM)中发现的一类独特的多能成年祖细胞,对多功能治疗方法极为有用。然而,MSCs在体外的生长停滞和过早衰老妨碍了对这些细胞的深入表征。此外,参与MSCs迁移的调控因子在很大程度上仍不清楚。鉴于蛋白质磷酸化与MSCs的增殖和迁移过程相关,在本研究中我们聚焦于野生型p53诱导磷酸酶-1(Wip1),这是一种研究充分的磷酸化调节因子。我们的结果表明,Wip1基因敲除显著抑制MSCs增殖,并通过降低细胞周期蛋白B1的表达诱导G2期细胞周期停滞。与野生型MSCs相比,Wip1(-/-) MSCs在培养六代后表现出过早的生长停滞。Transwell和划痕试验表明,Wip1(-/-) MSCs比野生型MSCs迁移更有效。此外,Wip1(-/-) MSCs增强的迁移反应可能归因于Rac1-GTP活性诱导增加、pAKT/AKT比值增加、丝状肌动蛋白(f-肌动蛋白)重排和丝状伪足形成增加。基于这些结果,我们随后检测了PI3K/AKT和Rac1抑制剂处理的效果,二者均损害了MSCs的迁移活性。因此,我们提出PI3K/AKT/Rac1信号轴介导Wip1基因敲除诱导的MSCs迁移。我们的研究结果表明,Wip1在MSCs转化中的主要功能是维持增殖能力。然而,敲除Wip1可增加MSCs的迁移能力。Wip1的这种双重作用为MSCs的定向输送提供了潜力。