Suppr超能文献

α-咔啉衍生物YCH337对微管蛋白和拓扑异构酶II的双重靶向作用以抑制肿瘤增殖和生长

Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition.

作者信息

Yi Jun-Mei, Zhang Xiao-Fei, Huan Xia-Juan, Song Shan-Shan, Wang Wei, Tian Qian-Ting, Sun Yi-Ming, Chen Yi, Ding Jian, Wang Ying-Qing, Yang Chun-Hao, Miao Ze-Hong

机构信息

Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.

Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.

出版信息

Oncotarget. 2015 Apr 20;6(11):8960-73. doi: 10.18632/oncotarget.3264.

Abstract

Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 μM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.

摘要

微管和拓扑异构酶II(Top2)都是重要的抗癌靶点,它们各自的抑制剂被广泛联合用于癌症治疗。然而,一些联合用药可能会相互拮抗,并且耐药性进一步限制了它们的治疗效果。在此,我们报告了YCH337,一种新型的α-咔啉衍生物,它同时作用于微管和Top2,可抑制肿瘤增殖和生长并克服耐药性。YCH337通过与秋水仙碱结合位点结合来抑制微管聚合,随后导致有丝分裂停滞。它还抑制Top2并导致DNA双链断裂。它对微管的破坏作用比Top2更强。YCH337在低浓度下诱导可逆的有丝分裂停滞,但会造成持续性DNA损伤。YCH337引发内在和外在凋亡,并降低MCL-1、cIAP1和XIAP蛋白水平。在这方面,YCH337的表现与长春新碱和依托泊苷的联合用药不同。YCH337抑制肿瘤细胞增殖,平均IC50为0.3μM。它也显著抑制了裸鼠体内HT-29异种移植瘤的生长。重要的是,YCH337对不同机制介导的耐药肿瘤细胞和相应的亲本细胞具有几乎相同的杀伤作用。连同其化学结构的新颖性,YCH337有望成为药物开发的先导物以及癌症治疗中微管/Top2双重靶向策略的原型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba8e/4496195/5bb56b3dc460/oncotarget-06-8960-g001.jpg

相似文献

2
DTA0100, dual topoisomerase II and microtubule inhibitor, evades paclitaxel resistance in P-glycoprotein overexpressing cancer cells.
Eur J Pharm Sci. 2017 Jul 15;105:159-168. doi: 10.1016/j.ejps.2017.05.011. Epub 2017 May 11.
3
A novel bis-indole destabilizes microtubules and displays potent in vitro and in vivo antitumor activity in prostate cancer.
Cancer Chemother Pharmacol. 2011 Feb;67(2):293-304. doi: 10.1007/s00280-010-1319-8. Epub 2010 Apr 11.
4
Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity.
PLoS One. 2016 Aug 10;11(8):e0160842. doi: 10.1371/journal.pone.0160842. eCollection 2016.
5
YSL-12, a novel microtubule-destabilizing agent, exerts potent anti-tumor activity against colon cancer in vitro and in vivo.
Cancer Chemother Pharmacol. 2016 Jun;77(6):1217-29. doi: 10.1007/s00280-016-3036-4. Epub 2016 Apr 23.
6
A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells.
Biochem Pharmacol. 2015 Sep 1;97(1):51-61. doi: 10.1016/j.bcp.2015.07.008. Epub 2015 Jul 23.
9
NK314, a topoisomerase II inhibitor that specifically targets the alpha isoform.
J Biol Chem. 2008 Aug 29;283(35):23711-20. doi: 10.1074/jbc.M803936200. Epub 2008 Jul 2.

引用本文的文献

1
Proteins and DNA Sequences Interacting with Tanshinones and Tanshinone Derivatives.
Int J Mol Sci. 2025 Jan 20;26(2):848. doi: 10.3390/ijms26020848.
3
Comprehensive review of α-carboline alkaloids: Natural products, updated synthesis, and biological activities.
Front Chem. 2022 Aug 26;10:988327. doi: 10.3389/fchem.2022.988327. eCollection 2022.
4
Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II.
Cancers (Basel). 2020 Oct 5;12(10):2863. doi: 10.3390/cancers12102863.
6
One Pot and Metal-Free Approach to 3-(2-Hydroxybenzoyl)-1-aza-anthraquinones.
Molecules. 2019 Aug 20;24(16):3017. doi: 10.3390/molecules24163017.
8
Binding of Harmine Derivatives to DNA: A Spectroscopic Investigation.
Molecules. 2017 Oct 27;22(11):1831. doi: 10.3390/molecules22111831.
9
Combining 53BP1 with BRCA1 as a biomarker to predict the sensitivity of poly(ADP-ribose) polymerase (PARP) inhibitors.
Acta Pharmacol Sin. 2017 Jul;38(7):1038-1047. doi: 10.1038/aps.2017.8. Epub 2017 Apr 17.
10
p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells.
Oncoimmunology. 2016 Dec 2;6(1):e1264564. doi: 10.1080/2162402X.2016.1264564. eCollection 2017.

本文引用的文献

1
Recent developments in tubulin polymerization inhibitors: An overview.
Eur J Med Chem. 2014 Nov 24;87:89-124. doi: 10.1016/j.ejmech.2014.09.051. Epub 2014 Sep 16.
3
Identification of DW532 as a novel anti-tumor agent targeting both kinases and tubulin.
Acta Pharmacol Sin. 2014 Jul;35(7):916-28. doi: 10.1038/aps.2014.33. Epub 2014 May 26.
4
The multiple facets of drug resistance: one history, different approaches.
J Exp Clin Cancer Res. 2014 Apr 28;33(1):37. doi: 10.1186/1756-9966-33-37.
5
MCL-1 degradation mediated by JNK activation via MEKK1/TAK1-MKK4 contributes to anticancer activity of new tubulin inhibitor MT189.
Mol Cancer Ther. 2014 Jun;13(6):1480-91. doi: 10.1158/1535-7163.MCT-13-0629. Epub 2014 Mar 31.
6
Drug discovery targeting cell division proteins, microtubules and FtsZ.
Bioorg Med Chem. 2014 Sep 15;22(18):5060-77. doi: 10.1016/j.bmc.2014.02.036. Epub 2014 Mar 5.
7
Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches.
Cancer Lett. 2014 Jun 1;347(2):159-66. doi: 10.1016/j.canlet.2014.03.013. Epub 2014 Mar 19.
8
Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function.
Bioorg Med Chem. 2014 Sep 15;22(18):5050-9. doi: 10.1016/j.bmc.2014.02.035. Epub 2014 Mar 4.
9
Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy.
Nat Rev Mol Cell Biol. 2014 Jan;15(1):49-63. doi: 10.1038/nrm3722.
10
Tubulin inhibitors: a patent review.
Expert Opin Ther Pat. 2014 Jan;24(1):69-88. doi: 10.1517/13543776.2014.859247. Epub 2013 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验