Suppr超能文献

高效液相色谱法与电化学检测法测定醌型二氢生物蝶呤

Determination of quinonoid dihydrobiopterin by high-performance liquid chromatography and electrochemical detection.

作者信息

Heales S, Hyland K

机构信息

Department of Child Health, Institute of Child Health, London, U.K.

出版信息

J Chromatogr. 1989 Sep 29;494:77-85. doi: 10.1016/s0378-4347(00)82658-4.

Abstract

Sodium bisulphite is shown to react with quinonoid dihydrobiopterin to form a stable adduct. Sodium bisulphite does not react with tetrahydrobiopterin. Quinonoid dihydrobiopterin reacts with dithioerythritol to form tetrahydrobiopterin, whereas the quinonoid dihydrobiopterin bisulphite adduct does not. Using these properties we have developed an indirect method for the quantitative measurement of quinonoid dihydrobiopterin. The method requires division of a sample into two. Dithioerythritol is added to one half (a). This converts quinonoid dihydrobiopterin to tetrahydrobiopterin and prevents the oxidation of tetrahydrobiopterin. Measurement of the tetrahydrobiopterin content of this sample by electrochemistry following high-performance liquid chromatographic separation (with dithioerythritol present in the mobile phase to prevent autoxidation of the tetrahydrobiopterin on column), therefore provides a total value of the tetrahydrobiopterin plus quinonoid dihydrobiopterin present within the original sample. Sodium bisulphite is added to the other portion of the sample (b), followed immediately by dithioerythritol which prevents autoxidation of the remaining tetrahydrobiopterin. The bisulphite reacts with the quinonoid dihydrobiopterin present and the quinonoid dihydrobiopterin-bisulphite adduct is no longer detected by electrochemistry at the retention time of tetrahydrobiopterin. Using reversed-phase high-performance liquid chromatography and redox electrochemical detection, measurement of tetrahydrobiopterin in the absence (a) and presence (b) of bisulphite enables the concentration of quinonoid dihydrobiopterin to be calculated by subtraction (a - b). This method is shown to be quantitative and preliminary experiments demonstrate that it can be adapted for biological samples.

摘要

已表明亚硫酸氢钠与醌型二氢生物蝶呤反应形成稳定加合物。亚硫酸氢钠不与四氢生物蝶呤反应。醌型二氢生物蝶呤与二硫赤藓糖醇反应形成四氢生物蝶呤,而醌型二氢生物蝶呤亚硫酸氢盐加合物则不反应。利用这些性质,我们开发了一种间接定量测定醌型二氢生物蝶呤的方法。该方法需要将样品分成两份。向其中一半(a)中加入二硫赤藓糖醇。这将醌型二氢生物蝶呤转化为四氢生物蝶呤,并防止四氢生物蝶呤氧化。在高效液相色谱分离后(流动相中存在二硫赤藓糖醇以防止柱上四氢生物蝶呤自氧化),通过电化学法测量该样品中的四氢生物蝶呤含量,因此可提供原始样品中四氢生物蝶呤加醌型二氢生物蝶呤的总值。向样品的另一部分(b)中加入亚硫酸氢钠,随后立即加入二硫赤藓糖醇以防止剩余四氢生物蝶呤自氧化。亚硫酸氢钠与存在的醌型二氢生物蝶呤反应,在四氢生物蝶呤的保留时间通过电化学法不再检测到醌型二氢生物蝶呤 - 亚硫酸氢盐加合物。使用反相高效液相色谱和氧化还原电化学检测,在不存在(a)和存在(b)亚硫酸氢钠的情况下测量四氢生物蝶呤,通过减法(a - b)可计算醌型二氢生物蝶呤的浓度。该方法已证明是定量的,初步实验表明它可适用于生物样品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验