Suppr超能文献

SimConcept:一种简化生物医学中复合命名实体的混合方法。

SimConcept: A Hybrid Approach for Simplifying Composite Named Entities in Biomedicine.

作者信息

Wei Chih-Hsuan, Leaman Robert, Lu Zhiyong

机构信息

8600 Rockville Pike, National Center for Biotechnology Information (NCBI), Bethesda, Maryland, USA, 20894.

出版信息

ACM BCB. 2014;2014:138-146. doi: 10.1145/2649387.2649420.

Abstract

Many text-mining studies have focused on the issue of named entity recognition and normalization, especially in the field of biomedical natural language processing. However, entity recognition is a complicated and difficult task in biomedical text. One particular challenge is to identify and resolve composite named entities, where a single span refers to more than one concept(e.g., BRCA1/2). Most bioconcept recognition and normalization studies have either ignored this issue, used simple ad-hoc rules, or only handled coordination ellipsis, which is only one of the many types of composite mentions studied in this work. No systematic methods for simplifying composite mentions have been previously reported, making a robust approach greatly needed. To this end, we propose a hybrid approach by integrating a machine learning model with a pattern identification strategy to identify the antecedent and conjuncts regions of a concept mention, and then reassemble the composite mention using those identified regions. Our method, which we have named SimConcept, is the first method to systematically handle most types of composite mentions. Our method achieves high performance in identifying and resolving composite mentions for three fundamental biological entities: genes (89.29% in F-measure), diseases (85.52% in F-measure) and chemicals (84.04% in F-measure). Furthermore, our results show that, using our SimConcept method can subsequently help improve the performance of gene and disease concept recognition and normalization.

摘要

许多文本挖掘研究都聚焦于命名实体识别与规范化问题,尤其是在生物医学自然语言处理领域。然而,在生物医学文本中,实体识别是一项复杂且困难的任务。一个特殊的挑战是识别和解析复合命名实体,即一个单一的跨度指代多个概念(例如,BRCA1/2)。大多数生物概念识别与规范化研究要么忽略了这个问题,使用简单的临时规则,要么只处理了并列省略,而并列省略只是本研究中所探讨的多种复合提及类型之一。此前尚未有简化复合提及的系统方法被报道,因此迫切需要一种强大的方法。为此,我们提出了一种混合方法,将机器学习模型与模式识别策略相结合,以识别概念提及的先行词和连接词区域,然后使用这些识别出的区域重新组合复合提及。我们的方法名为SimConcept,是第一种系统处理大多数类型复合提及的方法。我们的方法在识别和解析三种基本生物实体的复合提及方面取得了高性能:基因(F值为89.29%)、疾病(F值为85.52%)和化学物质(F值为84.04%)。此外,我们的结果表明,使用我们的SimConcept方法随后可以帮助提高基因和疾病概念识别与规范化的性能。

相似文献

1
2
SimConcept: a hybrid approach for simplifying composite named entities in biomedical text.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1385-91. doi: 10.1109/JBHI.2015.2422651. Epub 2015 Apr 13.
3
Identifying non-elliptical entity mentions in a coordinated NP with ellipses.
J Biomed Inform. 2014 Feb;47:139-52. doi: 10.1016/j.jbi.2013.10.002. Epub 2013 Oct 20.
4
Challenges in clinical natural language processing for automated disorder normalization.
J Biomed Inform. 2015 Oct;57:28-37. doi: 10.1016/j.jbi.2015.07.010. Epub 2015 Jul 14.
5
Linking entities through an ontology using word embeddings and syntactic re-ranking.
BMC Bioinformatics. 2019 Mar 27;20(1):156. doi: 10.1186/s12859-019-2678-8.
6
NCBI disease corpus: a resource for disease name recognition and concept normalization.
J Biomed Inform. 2014 Feb;47:1-10. doi: 10.1016/j.jbi.2013.12.006. Epub 2014 Jan 3.
7
A method for named entity normalization in biomedical articles: application to diseases and plants.
BMC Bioinformatics. 2017 Oct 13;18(1):451. doi: 10.1186/s12859-017-1857-8.
8
Entity recognition in the biomedical domain using a hybrid approach.
J Biomed Semantics. 2017 Nov 9;8(1):51. doi: 10.1186/s13326-017-0157-6.
9
LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools.
J Cheminform. 2019 Jan 10;11(1):3. doi: 10.1186/s13321-018-0327-2.
10
tmChem: a high performance approach for chemical named entity recognition and normalization.
J Cheminform. 2015 Jan 19;7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S3. doi: 10.1186/1758-2946-7-S1-S3. eCollection 2015.

引用本文的文献

2
Recent advances in predicting gene-disease associations.
F1000Res. 2017 Apr 26;6:578. doi: 10.12688/f1000research.10788.1. eCollection 2017.
3
AuDis: an automatic CRF-enhanced disease normalization in biomedical text.
Database (Oxford). 2016 Jun 7;2016. doi: 10.1093/database/baw091. Print 2016.
4
GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains.
Biomed Res Int. 2015;2015:918710. doi: 10.1155/2015/918710. Epub 2015 Aug 25.
5
SimConcept: a hybrid approach for simplifying composite named entities in biomedical text.
IEEE J Biomed Health Inform. 2015 Jul;19(4):1385-91. doi: 10.1109/JBHI.2015.2422651. Epub 2015 Apr 13.

本文引用的文献

1
Beyond SumBasic: Task-focused summarization with sentence simplification and lexical expansion.
Inf Process Manag. 2007 Nov;43(6):1606-1618. doi: 10.1016/j.ipm.2007.01.023. Epub 2007 Apr 19.
2
BioCreative-IV virtual issue.
Database (Oxford). 2014 May 22;2014. doi: 10.1093/database/bau039. Print 2014.
4
NCBI disease corpus: a resource for disease name recognition and concept normalization.
J Biomed Inform. 2014 Feb;47:1-10. doi: 10.1016/j.jbi.2013.12.006. Epub 2014 Jan 3.
5
Identifying non-elliptical entity mentions in a coordinated NP with ellipses.
J Biomed Inform. 2014 Feb;47:139-52. doi: 10.1016/j.jbi.2013.10.002. Epub 2013 Oct 20.
6
DNorm: disease name normalization with pairwise learning to rank.
Bioinformatics. 2013 Nov 15;29(22):2909-17. doi: 10.1093/bioinformatics/btt474. Epub 2013 Aug 21.
7
PubTator: a web-based text mining tool for assisting biocuration.
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W518-22. doi: 10.1093/nar/gkt441. Epub 2013 May 22.
8
tmVar: a text mining approach for extracting sequence variants in biomedical literature.
Bioinformatics. 2013 Jun 1;29(11):1433-9. doi: 10.1093/bioinformatics/btt156. Epub 2013 Apr 5.
10
Accelerating literature curation with text-mining tools: a case study of using PubTator to curate genes in PubMed abstracts.
Database (Oxford). 2012 Nov 17;2012:bas041. doi: 10.1093/database/bas041. Print 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验