Suppr超能文献

预测基因与疾病关联的最新进展。

Recent advances in predicting gene-disease associations.

作者信息

Opap Kenneth, Mulder Nicola

机构信息

University of Cape Town, Cape Town, South Africa.

出版信息

F1000Res. 2017 Apr 26;6:578. doi: 10.12688/f1000research.10788.1. eCollection 2017.

Abstract

Deciphering gene-disease association is a crucial step in designing therapeutic strategies against diseases. There are experimental methods for identifying gene-disease associations, such as genome-wide association studies and linkage analysis, but these can be expensive and time consuming. As a result, various methods for predicting associations from these and other data have been developed using different approaches. In this article, we review some of the recent approaches to the computational prediction of gene-disease association. We look at recent advancements in algorithms, categorising them into those based on genome variation, networks, text mining, and crowdsourcing. We also look at some of the challenges faced in the computational prediction of gene-disease associations.

摘要

破译基因与疾病的关联是设计疾病治疗策略的关键一步。有一些用于识别基因与疾病关联的实验方法,如全基因组关联研究和连锁分析,但这些方法可能既昂贵又耗时。因此,已经采用不同方法开发了各种从这些数据及其他数据预测关联的方法。在本文中,我们回顾了一些用于基因与疾病关联计算预测的最新方法。我们考察了算法的最新进展,并将它们分为基于基因组变异、网络、文本挖掘和众包的算法。我们还探讨了基因与疾病关联计算预测中面临的一些挑战。

相似文献

1
Recent advances in predicting gene-disease associations.
F1000Res. 2017 Apr 26;6:578. doi: 10.12688/f1000research.10788.1. eCollection 2017.
2
Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
Int J Med Inform. 2013 Sep;82(9):864-74. doi: 10.1016/j.ijmedinf.2013.05.003. Epub 2013 Jun 3.
3
Computational approaches to disease-gene prediction: rationale, classification and successes.
FEBS J. 2012 Mar;279(5):678-96. doi: 10.1111/j.1742-4658.2012.08471.x. Epub 2012 Jan 30.
4
Recent approaches to the prioritization of candidate disease genes.
Wiley Interdiscip Rev Syst Biol Med. 2012 Sep-Oct;4(5):429-42. doi: 10.1002/wsbm.1177. Epub 2012 Jun 11.
6
Bioinformatics challenges in genome-wide association studies (GWAS).
Methods Mol Biol. 2014;1168:63-81. doi: 10.1007/978-1-4939-0847-9_5.
7
HapBoost: a fast approach to boosting haplotype association analyses in genome-wide association studies.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Jan-Feb;10(1):207-12. doi: 10.1109/TCBB.2013.6.
8
DISEASES: text mining and data integration of disease-gene associations.
Methods. 2015 Mar;74:83-9. doi: 10.1016/j.ymeth.2014.11.020. Epub 2014 Dec 5.
9
Strategies for pathway analysis from GWAS data.
Curr Protoc Hum Genet. 2011 Oct;Chapter 1:Unit1.20. doi: 10.1002/0471142905.hg0120s71.
10
Unsupervised text mining for assessing and augmenting GWAS results.
J Biomed Inform. 2016 Apr;60:252-9. doi: 10.1016/j.jbi.2016.02.008. Epub 2016 Feb 19.

引用本文的文献

1
KG2ML: Integrating Knowledge Graphs and Positive Unlabeled Learning for Identifying Disease-Associated Genes.
medRxiv. 2025 Mar 17:2025.03.17.25323906. doi: 10.1101/2025.03.17.25323906.
3
Predicting gene disease associations with knowledge graph embeddings for diseases with curtailed information.
NAR Genom Bioinform. 2024 May 14;6(2):lqae049. doi: 10.1093/nargab/lqae049. eCollection 2024 Jun.
4
Identifying Candidate Gene-Disease Associations via Graph Neural Networks.
Entropy (Basel). 2023 Jun 7;25(6):909. doi: 10.3390/e25060909.
5
NIAPU: network-informed adaptive positive-unlabeled learning for disease gene identification.
Bioinformatics. 2023 Feb 3;39(2). doi: 10.1093/bioinformatics/btac848.
6
Systematic approach to identify therapeutic targets and functional pathways for the cervical cancer.
J Genet Eng Biotechnol. 2023 Feb 1;21(1):10. doi: 10.1186/s43141-023-00469-x.
9
How can natural language processing help model informed drug development?: a review.
JAMIA Open. 2022 Jun 11;5(2):ooac043. doi: 10.1093/jamiaopen/ooac043. eCollection 2022 Jul.
10
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations.
BMC Bioinformatics. 2021 Oct 4;22(1):482. doi: 10.1186/s12859-021-04397-w.

本文引用的文献

1
Text Mining Genotype-Phenotype Relationships from Biomedical Literature for Database Curation and Precision Medicine.
PLoS Comput Biol. 2016 Nov 30;12(11):e1005017. doi: 10.1371/journal.pcbi.1005017. eCollection 2016 Nov.
2
The Human Phenotype Ontology in 2017.
Nucleic Acids Res. 2017 Jan 4;45(D1):D865-D876. doi: 10.1093/nar/gkw1039. Epub 2016 Nov 28.
3
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
4
A crowdsourcing workflow for extracting chemical-induced disease relations from free text.
Database (Oxford). 2016 Apr 17;2016. doi: 10.1093/database/baw051. Print 2016.
5
The Implicitome: A Resource for Rationalizing Gene-Disease Associations.
PLoS One. 2016 Feb 26;11(2):e0149621. doi: 10.1371/journal.pone.0149621. eCollection 2016.
6
Prediction and Validation of Disease Genes Using HeteSim Scores.
IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):687-695. doi: 10.1109/TCBB.2016.2520947. Epub 2016 Feb 12.
8
ClinVar: public archive of interpretations of clinically relevant variants.
Nucleic Acids Res. 2016 Jan 4;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub 2015 Nov 17.
9
Next-generation diagnostics and disease-gene discovery with the Exomiser.
Nat Protoc. 2015 Dec;10(12):2004-15. doi: 10.1038/nprot.2015.124. Epub 2015 Nov 12.
10
Human genotype-phenotype databases: aims, challenges and opportunities.
Nat Rev Genet. 2015 Dec;16(12):702-15. doi: 10.1038/nrg3932. Epub 2015 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验