Lunceford Jared K
Merck Research Laboratories, Kenilworth, NJ 07033, USA.
Pharm Stat. 2015 May-Jun;14(3):233-341. doi: 10.1002/pst.1679. Epub 2015 Apr 6.
Predictive enrichment strategies use biomarkers to selectively enroll oncology patients into clinical trials to more efficiently demonstrate therapeutic benefit. Because the enriched population differs from the patient population eligible for screening with the biomarker assay, there is potential for bias when estimating clinical utility for the screening eligible population if the selection process is ignored. We write estimators of clinical utility as integrals averaging regression model predictions over the conditional distribution of the biomarker scores defined by the assay cutoff and discuss the conditions under which consistent estimation can be achieved while accounting for some nuances that may arise as the biomarker assay progresses toward a companion diagnostic. We outline and implement a Bayesian approach in estimating these clinical utility measures and use simulations to illustrate performance and the potential biases when estimation naively ignores enrichment. Results suggest that the proposed integral representation of clinical utility in combination with Bayesian methods provide a practical strategy to facilitate cutoff decision-making in this setting.
预测性富集策略利用生物标志物来选择性地招募肿瘤患者进入临床试验,以便更有效地证明治疗效果。由于富集人群与有资格使用生物标志物检测进行筛查的患者群体不同,如果忽略选择过程,在估计筛查合格人群的临床效用时就有可能产生偏差。我们将临床效用的估计量写成积分形式,该积分是对由检测临界值定义的生物标志物分数的条件分布上的回归模型预测进行平均,并讨论了在考虑生物标志物检测向伴随诊断发展过程中可能出现的一些细微差别时,能够实现一致估计的条件。我们概述并实施了一种贝叶斯方法来估计这些临床效用指标,并使用模拟来展示当估计过程天真地忽略富集时的性能和潜在偏差。结果表明,所提出的临床效用积分表示法与贝叶斯方法相结合,为在这种情况下促进临界值决策提供了一种实用策略。