Pailler E, Auger N, Lindsay C R, Vielh P, Islas-Morris-Hernandez A, Borget I, Ngo-Camus M, Planchard D, Soria J-C, Besse B, Farace F
INSERM U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", University of Paris-Sud XI, Gustave Roussy, Villejuif Translational Research Laboratory, Gustave Roussy, Villejuif.
Departments of Biopathology, Gustave Roussy, Villejuif, France.
Ann Oncol. 2015 Jul;26(7):1408-15. doi: 10.1093/annonc/mdv165. Epub 2015 Apr 6.
Genetic aberrations affecting the c-ros oncogene 1 (ROS1) tyrosine kinase gene have been reported in a small subset of patients with non-small-cell lung cancer (NSCLC). We evaluated whether ROS1-chromosomal rearrangements could be detected in circulating tumor cells (CTCs) and examined tumor heterogeneity of CTCs and tumor biopsies in ROS1-rearranged NSCLC patients.
Using isolation by size of epithelial tumor cells (ISET) filtration and filter-adapted-fluorescence in situ hybridization (FA-FISH), ROS1 rearrangement was examined in CTCs from four ROS1-rearranged patients treated with the ROS1-inhibitor, crizotinib, and four ROS1-negative patients. ROS1-gene alterations observed in CTCs at baseline from ROS1-rearranged patients were compared with those present in tumor biopsies and in CTCs during crizotinib treatment. Numerical chromosomal instability (CIN) of CTCs was assessed by DNA content quantification and chromosome enumeration.
ROS1 rearrangement was detected in the CTCs of all four patients with ROS1 rearrangement previously confirmed by tumor biopsy. In ROS1-rearranged patients, median number of ROS1-rearranged CTCs at baseline was 34.5 per 3 ml blood (range, 24-55). In ROS1-negative patients, median background hybridization of ROS1-rearranged CTCs was 7.5 per 3 ml blood (range, 7-11). Tumor heterogeneity, assessed by ROS1 copy number, was significantly higher in baseline CTCs compared with paired tumor biopsies in the three patients experiencing PR or SD (P < 0.0001). Copy number in ROS1-rearranged CTCs increased significantly in two patients who progressed during crizotinib treatment (P < 0.02). CTCs from ROS1-rearranged patients had a high DNA content and gain of chromosomes, indicating high levels of aneuploidy and numerical CIN.
We provide the first proof-of-concept that CTCs can be used for noninvasive and sensitive detection of ROS1 rearrangement in NSCLC patients. CTCs from ROS1-rearranged patients show considerable heterogeneity of ROS1-gene abnormalities and elevated numerical CIN, a potential mechanism to escape ROS1-inhibitor therapy in ROS1-rearranged NSCLC tumors.
在一小部分非小细胞肺癌(NSCLC)患者中已报道了影响c-ros癌基因1(ROS1)酪氨酸激酶基因的基因畸变。我们评估了是否能在循环肿瘤细胞(CTC)中检测到ROS1染色体重排,并检查了ROS1重排的NSCLC患者中CTC和肿瘤活检组织的肿瘤异质性。
使用上皮肿瘤细胞大小分离法(ISET)过滤和滤膜适配荧光原位杂交(FA-FISH),对4例接受ROS1抑制剂克唑替尼治疗的ROS1重排患者和4例ROS1阴性患者的CTC进行ROS1重排检测。将ROS1重排患者基线时CTC中观察到的ROS1基因改变与肿瘤活检组织及克唑替尼治疗期间CTC中的改变进行比较。通过DNA含量定量和染色体计数评估CTC的数值染色体不稳定性(CIN)。
在所有4例先前经肿瘤活检证实为ROS1重排的患者的CTC中均检测到ROS1重排。在ROS1重排的患者中,基线时ROS1重排CTC的中位数为每3 ml血液34.5个(范围为24 - 55个)。在ROS1阴性患者中,ROS1重排CTC的背景杂交中位数为每3 ml血液7.5个(范围为7 - 11个)。在经历部分缓解(PR)或疾病稳定(SD)的3例患者中,通过ROS1拷贝数评估的肿瘤异质性在基线CTC中显著高于配对的肿瘤活检组织(P < 0.0001)。在克唑替尼治疗期间病情进展的2例患者中,ROS1重排CTC中的拷贝数显著增加(P < 0.02)。ROS1重排患者的CTC具有高DNA含量和染色体增加,表明存在高水平的非整倍体和数值CIN。
我们首次提供了概念验证,即CTC可用于NSCLC患者ROS1重排的无创性和灵敏检测。ROS1重排患者的CTC显示出ROS1基因异常的显著异质性以及数值CIN升高,这是ROS1重排的NSCLC肿瘤逃避ROS1抑制剂治疗的潜在机制。