Bagby Sarah C, Chisholm Sallie W
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
ISME J. 2015 Oct;9(10):2232-45. doi: 10.1038/ismej.2015.36. Epub 2015 Apr 7.
Carbon fixation has a central role in determining cellular redox poise, increasingly understood to be a key parameter in cyanobacterial physiology. In the cyanobacterium Prochlorococcus-the most abundant phototroph in the oligotrophic oceans-the carbon-concentrating mechanism is reduced to the bare essentials. Given the ability of Prochlorococcus populations to grow under a wide range of oxygen concentrations in the ocean, we wondered how carbon and oxygen physiology intersect in this minimal phototroph. Thus, we examined how CO2:O2 gas balance influenced growth and chlorophyll fluorescence in Prochlorococcus strain MED4. Under O2 limitation, per-cell chlorophyll fluorescence fell at all CO2 levels, but still permitted substantial growth at moderate and high CO2. Under CO2 limitation, we observed little growth at any O2 level, although per-cell chlorophyll fluorescence fell less sharply when O2 was available. We explored this pattern further by monitoring genome-wide transcription in cells shocked with acute limitation of CO2, O2 or both. O2 limitation produced much smaller transcriptional changes than the broad suppression seen under CO2 limitation and CO2/O2 co-limitation. Strikingly, both CO2 limitation conditions initially evoked a transcriptional response that resembled the pattern previously seen in high-light stress, but at later timepoints we observed O2-dependent recovery of photosynthesis-related transcripts. These results suggest that oxygen has a protective role in Prochlorococcus when carbon fixation is not a sufficient sink for light energy.
碳固定在决定细胞氧化还原平衡方面起着核心作用,越来越多的研究认为这是蓝藻生理学中的一个关键参数。在蓝藻原绿球藻(贫营养海洋中最丰富的光合生物)中,碳浓缩机制已简化为最基本的要素。鉴于原绿球藻种群能够在海洋中广泛的氧气浓度下生长,我们想知道在这种最简单的光合生物中,碳和氧的生理机能是如何相互影响的。因此,我们研究了二氧化碳与氧气的气体平衡如何影响原绿球藻MED4菌株的生长和叶绿素荧光。在氧气受限的情况下,所有二氧化碳水平下每个细胞的叶绿素荧光都会下降,但在中等和高二氧化碳浓度下仍能实现显著生长。在二氧化碳受限的情况下,尽管有氧气时每个细胞的叶绿素荧光下降幅度较小,但在任何氧气水平下我们都观察到几乎没有生长。我们通过监测在二氧化碳、氧气或两者同时急性受限的情况下受到冲击的细胞中的全基因组转录,进一步探究了这种模式。与二氧化碳受限和二氧化碳/氧气共同受限时出现的广泛抑制相比,氧气受限产生的转录变化要小得多。引人注目的是,两种二氧化碳受限条件最初都会引发一种转录反应,类似于之前在高光胁迫下看到的模式,但在随后的时间点,我们观察到与光合作用相关的转录本出现了依赖氧气的恢复。这些结果表明,当碳固定不足以作为光能的汇时,氧气在原绿球藻中具有保护作用。