Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):E3091-E3100. doi: 10.1073/pnas.1619573114. Epub 2017 Mar 27.
Metabolism mediates the flow of matter and energy through the biosphere. We examined how metabolic evolution shapes ecosystems by reconstructing it in the globally abundant oceanic phytoplankter To understand what drove observed evolutionary patterns, we interpreted them in the context of its population dynamics, growth rate, and light adaptation, and the size and macromolecular and elemental composition of cells. This multilevel view suggests that, over the course of evolution, there was a steady increase in ' metabolic rate and excretion of organic carbon. We derived a mathematical framework that suggests these adaptations lower the minimal subsistence nutrient concentration of cells, which results in a drawdown of nutrients in oceanic surface waters. This, in turn, increases total ecosystem biomass and promotes the coevolution of all cells in the ecosystem. Additional reconstructions suggest that and the dominant cooccurring heterotrophic bacterium SAR11 form a coevolved mutualism that maximizes their collective metabolic rate by recycling organic carbon through complementary excretion and uptake pathways. Moreover, the metabolic codependencies of and SAR11 are highly similar to those of chloroplasts and mitochondria within plant cells. These observations lead us to propose a general theory relating metabolic evolution to the self-amplification and self-organization of the biosphere. We discuss the implications of this framework for the evolution of Earth's biogeochemical cycles and the rise of atmospheric oxygen.
新陈代谢将物质和能量在生物圈中流动。我们通过重建全球丰富的海洋浮游植物来研究代谢进化如何塑造生态系统。为了理解观察到的进化模式的驱动力,我们将它们解释为其种群动态、增长率和对光的适应、细胞的大小以及生物大分子和元素组成的函数。这种多层次的观点表明,在进化过程中,“代谢率和有机碳的排泄”稳步增加。我们得出了一个数学框架,表明这些适应性降低了细胞的最低生存营养浓度,从而导致海洋表面水中营养物质的消耗。这反过来又增加了整个生态系统的生物量,并促进了生态系统中所有细胞的共同进化。其他重建表明,和占主导地位的共生异养菌 SAR11 形成了一种共同进化的共生关系,通过互补的排泄和吸收途径回收有机碳,最大限度地提高它们的集体代谢率。此外,和 SAR11 的代谢相互依存关系与植物细胞内的叶绿体和线粒体非常相似。这些观察结果使我们提出了一个将代谢进化与生物圈的自我放大和自我组织联系起来的一般理论。我们讨论了这个框架对地球生物地球化学循环的进化和大气氧气上升的影响。