McIntosh Scott W, Leamon Robert J, Krista Larisza D, Title Alan M, Hudson Hugh S, Riley Pete, Harder Jerald W, Kopp Greg, Snow Martin, Woods Thomas N, Kasper Justin C, Stevens Michael L, Ulrich Roger K
High Altitude Observatory, National Center for Atmospheric Research, PO Box 3000, Boulder, Colorado 80307, USA.
Department of Physics, Montana State University, Bozeman, Montana 59717, USA.
Nat Commun. 2015 Apr 7;6:6491. doi: 10.1038/ncomms7491.
Solar magnetism displays a host of variational timescales of which the enigmatic 11-year sunspot cycle is most prominent. Recent work has demonstrated that the sunspot cycle can be explained in terms of the intra- and extra-hemispheric interaction between the overlapping activity bands of the 22-year magnetic polarity cycle. Those activity bands appear to be driven by the rotation of the Sun's deep interior. Here we deduce that activity band interaction can qualitatively explain the 'Gnevyshev Gap'—a well-established feature of flare and sunspot occurrence. Strong quasi-annual variability in the number of flares, coronal mass ejections, the radiative and particulate environment of the heliosphere is also observed. We infer that this secondary variability is driven by surges of magnetism from the activity bands. Understanding the formation, interaction and instability of these activity bands will considerably improve forecast capability in space weather and solar activity over a range of timescales.
太阳磁活动呈现出一系列不同的时间尺度变化,其中神秘的11年太阳黑子周期最为显著。最近的研究表明,太阳黑子周期可以用22年磁极性周期重叠活动带之间的半球内和半球外相互作用来解释。这些活动带似乎是由太阳深层内部的旋转驱动的。在此,我们推断活动带相互作用可以定性地解释“涅夫谢夫间隙”——耀斑和太阳黑子出现的一个公认特征。还观测到耀斑数量、日冕物质抛射、日球层辐射和粒子环境存在强烈的准年度变化。我们推断这种次级变化是由活动带的磁涌驱动的。了解这些活动带的形成、相互作用和不稳定性将大大提高在一系列时间尺度上对空间天气和太阳活动的预报能力。