Suppr超能文献

Localization of the enhanced input to cockroach giant interneurons after partial deafferentation.

作者信息

Volman S F

机构信息

Section of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853.

出版信息

J Neurobiol. 1989 Dec;20(8):762-83. doi: 10.1002/neu.480200808.

Abstract

The ventral giant interneurons (GIs) in the cockroach have two distinct dendritic fields: a small one ipsilateral to the soma, and a larger, contralateral field from which the axon arises. The major input to these GIs is from the cercus on the axon side; when this cercus is ablated in the last instar before the adult stage, input from the other cercus becomes more effective within 30 days (Vardi and Camhi, 1982b). I wished to determine if the input from the intact, soma-ipsilateral cercus contacted the GIs purely ipsilaterally and if EPSPs at this site were larger in deafferented animals. Consistent with earlier anatomical findings, intracellular recordings from the GI somata showed that the majority of cercal inputs synapse on their own side of the ganglion in normal animals. This was evidenced by differences in the size and shape of the synaptic potentials evoked from the two cerci and by the presence of large EPSPs after a ganglion had been split along the midline. Unitary EPSPs produced by stimulation of single, identified cercal afferents, ipsilateral to the soma, were compared between normal and deafferented animals. Column "h" afferents were chosen because they make a large contribution to the receptive fields of GIs 1 and 2 after ablation of the contralateral cercus. In addition, the arbors of these afferents, when stained with cobalt, did not cross the ganglionic midline in normal animals. Unitary EPSPs recorded in GI 2 were significantly larger in the deafferented animals. There was, however, no significant change in the size of EPSPs in GI 1. Nevertheless, the results from GI 2 suggest that partial deafferentation in the central nervous system can increase the efficacy of synapses distant from the locus of denervation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验