Suppr超能文献

溶解度预测、溶剂化物和共晶体筛选作为合理晶体工程的工具。

Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering.

作者信息

Loschen Christoph, Klamt Andreas

机构信息

COSMOlogic GmbH & Co. KG, Leverkusen, Germany.

Institute of Physical and Theoretical Chemistry, University of Regensburg, Regensburg, Germany.

出版信息

J Pharm Pharmacol. 2015 Jun;67(6):803-11. doi: 10.1111/jphp.12376. Epub 2015 Apr 7.

Abstract

OBJECTIVES

The fact that novel drug candidates are becoming increasingly insoluble is a major problem of current drug development. Computational tools may address this issue by screening for suitable solvents or by identifying potential novel cocrystal formers that increase bioavailability. In contrast to other more specialized methods, the fluid phase thermodynamics approach COSMO-RS (conductor-like screening model for real solvents) allows for a comprehensive treatment of drug solubility, solvate and cocrystal formation and many other thermodynamics properties in liquids. This article gives an overview of recent COSMO-RS developments that are of interest for drug development and contains several new application examples for solubility prediction and solvate/cocrystal screening.

METHODS

For all property predictions COSMO-RS has been used. The basic concept of COSMO-RS consists of using the screening charge density as computed from first principles calculations in combination with fast statistical thermodynamics to compute the chemical potential of a compound in solution.

KEY FINDING

The fast and accurate assessment of drug solubility and the identification of suitable solvents, solvate or cocrystal formers is nowadays possible and may be used to complement modern drug development. Efficiency is increased by avoiding costly quantum-chemical computations using a database of previously computed molecular fragments.

SUMMARY

COSMO-RS theory can be applied to a range of physico-chemical properties, which are of interest in rational crystal engineering. Most notably, in combination with experimental reference data, accurate quantitative solubility predictions in any solvent or solvent mixture are possible. Additionally, COSMO-RS can be extended to the prediction of cocrystal formation, which results in considerable predictive accuracy concerning coformer screening. In a recent variant costly quantum chemical calculations are avoided resulting in a significant speed-up and ease-of-use.

摘要

目标

新型候选药物的溶解性越来越差,这是当前药物研发中的一个主要问题。计算工具可以通过筛选合适的溶剂或识别潜在的新型共晶形成体来提高生物利用度,从而解决这一问题。与其他更专业的方法不同,液相热力学方法COSMO-RS(真实溶剂的导体类筛选模型)能够全面处理药物溶解度、溶剂化物和共晶形成以及液体中的许多其他热力学性质。本文概述了近期对药物研发具有重要意义的COSMO-RS进展,并包含了几个溶解度预测和溶剂化物/共晶筛选的新应用实例。

方法

所有性质预测均使用COSMO-RS。COSMO-RS的基本概念是将基于第一性原理计算得出的筛选电荷密度与快速统计热力学相结合,以计算化合物在溶液中的化学势。

主要发现

如今,能够快速准确地评估药物溶解度,并识别合适的溶剂、溶剂化物或共晶形成体,这些可用于补充现代药物研发。通过使用预先计算的分子片段数据库避免了昂贵的量子化学计算,从而提高了效率。

总结

COSMO-RS理论可应用于一系列在合理晶体工程中具有重要意义的物理化学性质。最值得注意的是,结合实验参考数据,可以对任何溶剂或溶剂混合物中的溶解度进行准确的定量预测。此外,COSMO-RS可以扩展到共晶形成的预测,这在共晶形成体筛选方面具有相当高的预测准确性。在最近的一个变体中,避免了昂贵的量子化学计算,从而显著提高了计算速度并简化了使用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验