Suppr超能文献

利用计算工具和半自动高通量筛选发现具有增强溶出度的西尼地平共晶体

Discovery of Cilnidipine Cocrystals with Enhanced Dissolution by the Use of Computational Tools and Semiautomatic High-Throughput Screening.

作者信息

Guidetti Matteo, Hilfiker Rolf, De Paul Susan M, Bauer-Brandl Annette, Blatter Fritz, Kuentz Martin

机构信息

Solid-State Development Department, Solvias AG, Römerpark 2, CH- 4303 Kaiseraugst, Switzerland.

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

出版信息

Cryst Growth Des. 2025 Apr 29;25(10):3374-3385. doi: 10.1021/acs.cgd.5c00184. eCollection 2025 May 21.

Abstract

Cocrystals are an attractive option for overcoming drug limitations, such as a low dissolution rate and absorption of poorly water-soluble compounds. Nevertheless, the discovery of new cocrystals remains a trial-and-error approach in which hundreds of coformers and several experimental methods are often tested. To streamline the cocrystal screening, computational methods can be used to select the coformers most likely to form a cocrystal, while high-throughput screening (HTS) approaches can rapidly screen them experimentally. In this manuscript, a new cocrystal of the extremely poorly soluble drug cilnidipine (solubility ≈30 ng/mL, 0.06 μM) was successfully discovered by applying HTS approaches. Only one cocrystal resulted from the screening with a total of 52 coformers, whereby the computational approach molecular complementarity successfully ranked this coformer (-toluenesulfonamide) at the third position of the screening list. Dissolution studies conducted on the cocrystal in blank FaSSIF (fasted-state simulated intestinal fluid) and FaSSIF pH 6.5 revealed enhanced drug dissolution with a maximum achieved supersaturation equal to seven times the solubility of the crystalline drug. Dissolution rates of drug and coformer were compared for better mechanistic understanding of the cocrystal dissolution-supersaturation-precipitation behavior. The case of cilnidipine with a rare occurrence of cocrystals emphasized the importance of using joint computational and HTS approaches to enable successful cocrystal identification for pharmaceutical development.

摘要

共晶体是克服药物局限性的一个有吸引力的选择,比如低溶解速率以及难溶性化合物的吸收问题。然而,新共晶体的发现仍然是一种试错方法,通常要测试数百种共形成物和几种实验方法。为了简化共晶体筛选过程,可以使用计算方法来选择最有可能形成共晶体的共形成物,而高通量筛选(HTS)方法可以通过实验快速筛选它们。在本论文中,通过应用高通量筛选方法成功发现了极难溶性药物西尼地平(溶解度≈30 ng/mL,0.06 μM)的一种新共晶体。用总共52种共形成物进行筛选仅得到一种共晶体,其中计算方法分子互补性成功地将这种共形成物(对甲苯磺酰胺)排在筛选列表的第三位。在空白FaSSIF(禁食状态模拟肠液)和pH 6.5的FaSSIF中对该共晶体进行的溶出度研究表明,药物溶出度提高,最大过饱和度达到结晶药物溶解度的七倍。比较了药物和共形成物的溶出速率,以便更好地从机理上理解共晶体的溶解 - 过饱和 - 沉淀行为。西尼地平共晶体罕见的情况强调了使用联合计算和高通量筛选方法对药物开发中成功鉴定共晶体的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/491d/12100653/874de8cd1a73/cg5c00184_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验