Suppr超能文献

NCN的热分解:激波管研究、量子化学计算和主方程建模

Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

作者信息

Busch Anna, González-García Núria, Lendvay György, Olzmann Matthias

机构信息

†Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany.

‡Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, Budapest H-1117, Hungary.

出版信息

J Phys Chem A. 2015 Jul 16;119(28):7838-46. doi: 10.1021/acs.jpca.5b01347. Epub 2015 Apr 8.

Abstract

The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

摘要

在1 bar和4 bar附近的压力下,于1790 - 2960 K的温度范围内,在反射激波后研究了氰基氮烯(NCN)的热分解。将NCN₃在氩气中的高度稀释混合物进行激波加热以产生NCN,并使用156.1 nm处的原子共振吸收光谱监测作为反应产物的C原子的浓度-时间曲线。通过甲烷热解实验进行校准。反应(³)NCN + M → (³)C + N₂ + M(R1)的速率系数由C原子浓度-时间曲线的初始斜率确定。发现在实验条件下反应R1处于低压区。双分子速率系数的温度依赖性可用以下阿伦尼乌斯方程表示:k1(bim) = (4.2 ± 2.1) × 10¹⁴ exp[-242.3 kJ mol⁻¹/(RT)] cm³ mol⁻¹ s⁻¹。使用具有RRKM理论特定速率系数的主方程对速率系数进行分析。必要的分子数据和能量采用量子化学方法计算至CCSD(T)/CBS//CCSD/cc-pVTZ理论水平。从势能面的形貌可知,反应R1通过NCN异构化为CNN以及随后沿共线反应坐标的C - N键断裂进行,且没有紧密的过渡态。计算结果再现了速率系数的大小和温度依赖性,并证实反应R1在我们的实验条件下处于低压区。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验