Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.
J Phys Chem A. 2013 Oct 10;117(40):10228-38. doi: 10.1021/jp4073153. Epub 2013 Sep 24.
The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels. Lastly, measurements of H-atoms from the reaction of CH3 with C2H2 provided direct unambiguous determinations of the rate constant for the dominant process under the present experimental conditions, the addition-elimination, CH3 + C2H2 → p-C3H4 + H (3b). Experimental rate constants for k(3b) can be represented by the Arrhenius equation k(3b)(T) = 5.16 × 10(-13) exp(-3852 K/T) cm(3) molecules(-1) s(-1) (1127 K ≤ T ≤ 1346 K). The present determinations for k(3b) represent the only direct measurements for this reaction and are also in good agreement with recent theoretical predictions. The present experimental k(3b) values were also used to derive rate constants, k(-3b), for the more extensively studied back-process, the reaction of H-atoms with propyne. The best fit Arrhenius equation, combining the presently derived k(-3b) values with a recent experimental determination for k(-3b), can be represented by k(-3b)(T) = 3.87 × 10(-11) exp(-1313 K/T) cm(3) molecules(-1) s(-1) (870 K ≤ T ≤ 1346 K). The present studies represent a novel implementation of the sensitive H-ARAS technique to measure rate constants for poorly characterized and difficult to isolate "slow" CH3-radical reactions with stable C2 hydrocarbons.
CH3 + C2H6 → C2H4 + CH4 + H(1),CH3 + C2H4 → 产物 + H(2),以及 CH3 + C2H2 → 产物 + H(3)。在这项工作中,双乙酰基(CH3CO)2 被用作清洁的高温热源,用于所有三个反应的 CH3-自由基。对于反应 1,实验覆盖了 1153 K ≤ T ≤ 1297 K 的 T 范围,在 P ~ 0.4 bar 下进行。反应 2 的实验覆盖了 1176 K ≤ T ≤ 1366 K 的 T 范围,在 P ~ 1.0 bar 下进行,反应 3 的实验覆盖了 1127 K ≤ T ≤ 1346 K 的 T 范围,在 P ~ 1.0 bar 下进行。在反应 1-3 上进行了反射激波管实验,通过 H-原子原子共振吸收光谱法(ARAS)监测 H-原子的形成。使用组装的动力学模型拟合 H-原子的时间分布,以确定 k1、k2 和 k3。对于 C2H6,[H]-原子的测量用于推导直接的高温速率常数 k1,该常数可以用 Arrhenius 方程 k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1)(1153 K ≤ T ≤ 1297 K)表示,这是唯一发生的双分子过程,即 H 原子的抽取。基于在 CCSD(T)/CBS//M06-2X/cc-pVTZ 理论水平上计算的从头算性质的 TST 计算,在 20%以内与测量的速率常数非常吻合。对于 CH3 与 C2H4 的反应,本研究中的速率常数结果 k2',是指两个竞争过程,加成消除和直接抽取 CH3 + C2H4 → C3H6 + H(2b)和 CH3 + C2H4 → C2H2 + H + CH4(2c)的速率常数之和。k2'的实验速率常数可以用 Arrhenius 方程 k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1)(1176 K ≤ T ≤ 1366 K)表示。本研究的结果与最近的理论预测非常吻合。本研究为这些通道的高温速率常数提供了唯一的直接测量。最后,CH3 与 C2H2 反应产生的 H-原子的测量提供了在当前实验条件下主导过程,加成消除 CH3 + C2H2 → p-C3H4 + H(3b)的速率常数的直接明确测定。k(3b)的实验速率常数可以用 Arrhenius 方程 k(3b)(T) = 5.16 × 10(-13) exp(-3852 K/T) cm(3) molecules(-1) s(-1)(1127 K ≤ T ≤ 1346 K)表示。本研究的 k(3b)测定值代表了对该反应的唯一直接测量,也与最近的理论预测非常吻合。本研究的实验 k(3b)值还用于推导更广泛研究的反过程,即 H-原子与丙炔的反应的速率常数 k(-3b)。与最近的实验确定的 k(-3b)值相结合的最佳拟合 Arrhenius 方程,可以用 k(-3b)(T) = 3.87 × 10(-11) exp(-1313 K/T) cm(3) molecules(-1) s(-1)(870 K ≤ T ≤ 1346 K)表示。本研究代表了一种新颖的方法,即利用灵敏的 H-ARAS 技术来测量具有较差特征和难以分离的“慢”CH3-自由基与稳定的 C2 烃的反应的速率常数。