SNES:单细胞核外显子组测序。

SNES: single nucleus exome sequencing.

作者信息

Leung Marco L, Wang Yong, Waters Jill, Navin Nicholas E

出版信息

Genome Biol. 2015 Mar 25;16(1):55. doi: 10.1186/s13059-015-0616-2.

Abstract

Single-cell genome sequencing methods are challenged by poor physical coverage and high error rates, making it difficult to distinguish real biological variants from technical artifacts. To address this problem, we developed a method called SNES that combines flow-sorting of single G1/0 or G2/M nuclei, time-limited multiple-displacement-amplification, exome capture, and next-generation sequencing to generate high coverage (96%) data from single human cells. We validated our method in a fibroblast cell line, and show low allelic dropout and false-positive error rates, resulting in high detection efficiencies for single nucleotide variants (92%) and indels (85%) in single cells.

摘要

单细胞基因组测序方法面临物理覆盖度差和错误率高的挑战,这使得难以从技术假象中区分出真正的生物学变异。为了解决这个问题,我们开发了一种名为SNES的方法,该方法结合了单个G1/0或G2/M期细胞核的流式分选、限时多重置换扩增、外显子捕获和新一代测序,以从单个人类细胞中生成高覆盖度(96%)的数据。我们在一个成纤维细胞系中验证了我们的方法,结果显示等位基因脱扣率和假阳性错误率较低,从而使单细胞中单个核苷酸变异(92%)和插入缺失(85%)的检测效率较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd27/4373516/46d8e27be777/13059_2015_616_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索