Suppr超能文献

热化学非平衡气体混合物的通用多组分宏观建模

General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

作者信息

Liu Yen, Panesi Marco, Sahai Amal, Vinokur Marcel

机构信息

NASA Ames Research Center, Moffett Field, California 94035, USA.

University of Illinois, Urbana-Champaign, Illinois 61801, USA.

出版信息

J Chem Phys. 2015 Apr 7;142(13):134109. doi: 10.1063/1.4915926.

Abstract

This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy relaxation model, which can only be applied to molecules, the new model is applicable to atoms, molecules, ions, and their mixtures. Numerical examples and model validations are carried out with two gas mixtures using the maximum entropy linear model: one mixture consists of nitrogen molecules undergoing internal excitation and dissociation and the other consists of nitrogen atoms undergoing internal excitation and ionization. Results show that the original hundreds to thousands of microscopic equations can be reduced to two macroscopic equations with almost perfect agreement for the total number density and total internal energy using only one or two groups. We also obtain good prediction of the microscopic state populations using 5-10 groups in the macroscopic equations.

摘要

本文为热化学非平衡的宏观建模开启了一扇新的大门。采用一种具有变革性的方法,我们摒弃了源于内能模式分离和朗道 - 泰勒弛豫方程的传统理论与实践。相反,我们求解微观基本方程的矩形式,但仅寻求微观态分布函数的最优表示,该表示能在任何时刻为某些宏观量提供收敛且时间精确的解。该建模在微观层面不做任何特设假设或简化,涵盖所有可能的碰撞和辐射过程;因此它保留了所有非平衡流体物理特性。我们以耦合且统一的方式为经历完全一般跃迁的气体制定热化学非平衡宏观方程和速率系数。所有碰撞伙伴都可以具有内部结构,并且在跃迁后可以改变其内能状态。该模型基于态分布函数的重构。为了更好地描述非平衡态分布,将内能空间细分为多个组。基于最大熵原理,每组中分布函数的对数表示为内能的幂级数。将加权残差法应用于微观方程,以简洁地获得任意阶的宏观矩方程和速率系数。该模型的精度仅取决于态分布函数的假定表达式和所使用的组数,并且可以对精度和收敛性进行自检。我们表明,宏观内能转移与质量和动量转移类似,是通过非线性碰撞过程发生的,并非像朗道 - 泰勒方程所描述的那样是一个简单的弛豫过程。与仅适用于分子的经典振动能量弛豫模型不同,新模型适用于原子、分子、离子及其混合物。使用最大熵线性模型对两种气体混合物进行了数值示例和模型验证:一种混合物由经历内部激发和解离的氮分子组成,另一种由经历内部激发和电离的氮原子组成。结果表明,最初的数百到数千个微观方程可以简化为两个宏观方程,仅使用一组或两组时,总粒子数密度和总内能几乎完全一致。我们还在宏观方程中使用5 - 10组获得了对微观态布居的良好预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验