Department of Chemistry and the James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
J Phys Chem A. 2010 Apr 15;114(14):4934-45. doi: 10.1021/jp911739a.
This study photolytically generates, from 2-bromoethanol photodissociation, the 2-hydroxyethyl radical intermediate of the OH + ethene reaction and measures the velocity distribution of the stable radicals. We introduce an impulsive model to characterize the partitioning of internal energy in the C(2)H(4)OH fragment. It accounts for zero-point and thermal vibrational motion to determine the vibrational energy distribution of the nascent C(2)H(4)OH radicals and the distribution of total angular momentum, J, as a function of the total recoil kinetic energy imparted in the photodissociation. We render this system useful for the study of the subsequent dissociation of the 2-hydroxyethyl radical to the possible asymptotic channels of the OH + ethene reaction. The competition between these channels depends on the internal energy and the J distribution of the radicals. First, we use velocity map imaging to separately resolve the C(2)H(4)OH + Br((2)P(3/2)) and C(2)H(4)OH + Br((2)P(1/2)) photodissociation channels, allowing us to account for the 10.54 kcal/mol partitioned to the Br((2)P(1/2)) cofragment. We determine an improved resonance enhanced multiphoton ionization (REMPI) line strength for the Br transitions at 233.681 nm (5p (4)P(1/2) <-- 4p (2)P(3/2)) and 234.021 nm (5p (2)S(1/2) <-- 4p (2)P(1/2)) and obtain a spin-orbit branching ratio for Br((2)P(1/2)):Br((2)P(3/2)) of 0.26 +/- 0.03:1. Energy and momentum conservation give the distribution of total internal energy, rotational and vibrational, in the C(2)H(4)OH radicals. Then, using 10.5 eV photoionization, we measure the velocity distribution of the radicals that are stable to subsequent dissociation. The onset of dissociation occurs at internal energies much higher than those predicted by theoretical methods and reflects the significant amount of rotational energy imparted to the C(2)H(4)OH photofragment. Instead of estimating the mean rotational energy with an impulsive model from the equilibrium geometry of 2-bromoethanol, our model explicitly includes weighting over geometries across the quantum wave function with zero, one, and two quanta in the harmonic mode that most strongly alters the exit impact parameter. The model gives a nearly perfect prediction of the measured velocity distribution of stable radicals near the dissociation onset using a G4 prediction of the C-Br bond energy and the dissociation barrier for the OH + ethene channel calculated by Senosiain et al. (J. Phys. Chem. A 2006, 110, 6960). The model also indicates that the excited state dissociation proceeds primarily from a conformer of 2-bromoethanol that is trans across the C-C bond. We discuss the possible extensions of our model and the effect of the radical intermediate's J-distribution on the branching between the OH + ethene product channels.
本研究通过 2-溴乙醇光解产生 OH + 乙烯反应的 2-羟乙基自由基中间体,并测量稳定自由基的速度分布。我们引入了一个脉冲模型来描述 C(2)H(4)OH 片段内部能量的分配。它考虑了零点能和热振动运动,以确定初生 C(2)H(4)OH 自由基的振动能分布和总角动量 J 的分布,作为光解过程中传递给 C(2)H(4)OH 自由基的总反冲动能的函数。我们使这个系统能够用于研究 2-羟乙基自由基随后的解离,以达到 OH + 乙烯反应的可能渐近通道。这些通道之间的竞争取决于自由基的内部能量和 J 分布。首先,我们使用速度映射成像分别分辨 C(2)H(4)OH + Br((2)P(3/2)) 和 C(2)H(4)OH + Br((2)P(1/2)) 光解通道,使我们能够解释分配给 Br((2)P(1/2)) 共碎片的 10.54 kcal/mol。我们确定了在 233.681nm(5p(4)P(1/2)<--4p(2)P(3/2))和 234.021nm(5p(2)S(1/2)<--4p(2)P(1/2))处 Br 跃迁的改进的共振增强多光子电离(REMPI)线强度,并获得了 Br((2)P(1/2)):Br((2)P(3/2))的自旋轨道分支比为 0.26 +/- 0.03:1。能量和动量守恒给出了 C(2)H(4)OH 自由基中总内部能量、旋转和振动的分布。然后,使用 10.5eV 光电离,我们测量了对随后的解离稳定的自由基的速度分布。解离的起始发生在比理论方法预测的内部能量高得多的位置,这反映了向 C(2)H(4)OH 光碎片传递的大量旋转能量。我们的模型不是从 2-溴乙醇的平衡几何形状用脉冲模型估计平均旋转能量,而是明确地包括在谐波模式中对量子波函数的几何形状进行加权,该模式具有最强的影响出口影响参数的量子数为零、一和两个。该模型使用 G4 对 C-Br 键能的预测和 Senosiain 等人计算的 OH + 乙烯通道的离解势垒(J. Phys. Chem. A 2006, 110, 6960),对在离解起始附近稳定自由基的测量速度分布给出了几乎完美的预测。该模型还表明,激发态离解主要来自 C-C 键横过的 2-溴乙醇的构象。我们讨论了我们模型的可能扩展以及自由基中间体 J 分布对 OH + 乙烯产物通道之间分支的影响。