Suppr超能文献

基于根系的耳颞神经分类建议。

Proposed classification of auriculotemporal nerve, based on the root system.

作者信息

Komarnitki Iulian, Tomczyk Jacek, Ciszek Bogdan, Zalewska Marta

机构信息

Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland.

Department of Biological Anthropology, Cardinal Stefan Wyszynski University, Warsaw, Poland.

出版信息

PLoS One. 2015 Apr 9;10(4):e0123120. doi: 10.1371/journal.pone.0123120. eCollection 2015.

Abstract

The topography of the auriculotemporal nerve (ATN) root system is the main criterion of this nerve classification. Previous publications indicate that ATN may have between one and five roots. Most common is a one- or two-root variant of the nerve structure. The problem of many publications is the inconsistency of nomenclature which concerns the terms "roots", "connecting branches", or "branches" that are used to identify the same structures. This study was performed on 80 specimens (40 adults and 40 fetuses) to propose a classification based on: (i) the number of roots, (ii) way of root division, and (iii) configuration of interradicular fibers that form the ATN trunk. This new classification is a remedy for inconsistency of nomenclature of ATN in the infratemporal fossa. This classification system has proven beneficial when organizing all ATN variants described in previous studies and could become a helpful tool for surgeons and dentists. Examination of ATN from the infratemporal fossa of fetuses (the youngest was at 18 weeks gestational age) showed that, at that stage, the nerve is fully developed.

摘要

耳颞神经(ATN)根系的局部解剖是该神经分类的主要标准。先前的出版物表明,ATN可能有1至5个根。最常见的是神经结构的单根或双根变体。许多出版物存在的问题是命名不一致,涉及用于识别相同结构的“根”“连接支”或“分支”等术语。本研究对80个标本(40例成人和40例胎儿)进行,以基于以下方面提出一种分类:(i)根的数量,(ii)根的分支方式,以及(iii)形成ATN干的根间纤维的形态。这种新分类是对颞下窝ATN命名不一致问题的一种补救。当整理先前研究中描述的所有ATN变体时,该分类系统已证明是有益的,并且可能成为外科医生和牙医的有用工具。对胎儿颞下窝的ATN进行检查(最年轻的为孕18周)表明,在那个阶段,神经已完全发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad5e/4391942/ed015e59a67b/pone.0123120.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验