Suppr超能文献

符号-数字模式测验中快速信息处理过程中的附带学习。

Incidental learning during rapid information processing on the symbol-digit modalities test.

作者信息

Denney Douglas R, Hughes Abbey J, Elliott Jacquelyn K, Roth Alexandra K, Lynch Sharon G

机构信息

Department of Psychology, University of Kansas, Lawrence, KS 66045, USA

Department of Psychology, University of Kansas, Lawrence, KS 66045, USA.

出版信息

Arch Clin Neuropsychol. 2015 Jun;30(4):322-8. doi: 10.1093/arclin/acv019. Epub 2015 Apr 8.

Abstract

The Symbol--Digit Modalities Test (SDMT) is widely used to assess processing speed in MS patients. We developed a computerized version of the SDMT (c-SDMT) that scored participants' performance during subintervals over the course of the usual 90-s time period and also added an incidental learning test (c-ILT) to assess how well participants learned the symbol-digit associations while completing the c-SDMT. Patients with MS (n = 65) achieved lower scores than healthy controls (n = 38) on both the c-SDMT and c-ILT, and the scores on the two tests were correlated. However, no increase in the rate of item completion occurred for either group over the course of the c-SDMT, and the difference between groups was the same during each subinterval. Therefore, it seems implausible that controls completed more items on the c-SDMT because they were more adept at learning the symbol-digit associations as the test ensued. Instead, MS patients' poorer incidental learning performance appears to reflect the greater attentional burden that tasks requiring rapid serial processing of information impose upon them.

摘要

符号数字模态测验(SDMT)被广泛用于评估多发性硬化症(MS)患者的处理速度。我们开发了一种计算机化的SDMT(c-SDMT),它在通常90秒的时间段内对参与者在各个子区间的表现进行评分,并且还增加了一项附带学习测试(c-ILT),以评估参与者在完成c-SDMT时学习符号数字关联的情况。MS患者(n = 65)在c-SDMT和c-ILT上的得分均低于健康对照组(n = 38),并且这两项测试的得分存在相关性。然而,在c-SDMT过程中,两组的项目完成率均未增加,且组间差异在每个子区间都是相同的。因此,认为对照组在c-SDMT上完成了更多项目是因为他们在测试进行过程中更善于学习符号数字关联,这似乎不太合理。相反,MS患者较差的附带学习表现似乎反映了需要快速串行处理信息的任务给他们带来的更大注意力负担。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验