Suppr超能文献

学习作为多发性硬化症认知的数字标志:来自数字符号数字模态测试的经验教训。

Learning as a digital hallmark of cognition in multiple sclerosis: lessons from a digital symbol digit modalities test.

作者信息

Dini Michelangelo, Tacchini Marta, Gamberini Giulia, Boschetti Angela, Caporali Alessandra, Chiveri Luca, Rodegher Mariaemma, Turchi Letizia, Comi Giancarlo, Leocani Letizia

机构信息

Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.

Experimental Neurophysiology Unit, Institute of Experimental Neurology-INSPE, IRCCS San Raffaele Scientific Institute, Milan, Italy.

出版信息

J Neurol. 2025 Jul 25;272(8):536. doi: 10.1007/s00415-025-13270-2.

Abstract

BACKGROUND

Multiple Sclerosis (MS) often causes cognitive impairment that significantly impacts functional independence. The Symbol Digit Modalities Test (SDMT) is the gold standard for screening and monitoring cognitive functioning in people with MS (pwMS). Electronic SDMT (eSDMT) adaptations offer potential for remote monitoring and capturing more detailed performance metrics, compared to conventional pen-and-paper administration.

OBJECTIVES

This study aimed to evaluate novel metrics derived from a validated eSDMT to enhance cognitive assessment and detect cognitive impairment in pwMS.

METHODS

We included 93 pwMS who performed an eSDMT which enables automatic collection of single-stimulus reaction times (RTs) and accuracy of responses. We investigated Performance Index-a scoring metric based on speed and accuracy-and the slope of individual RTs during the eSDMT task, which reflects response speed changes. We assessed the concurrent validity and test-retest reliability of Performance Index, as well as the impact of sociodemographic variables. Correlations with gold-standard cognitive tests of learning (California Verbal Learning Test, Brief Visuospatial Memory Test) were also explored. Hierarchical linear and logistic regression analyses were used to predict oral SDMT scores and broader cognitive impairment, respectively.

RESULTS

Participants exhibited improving RTs as the eSDMT progressed, reflecting generalized intra-trial learning. eSDMT Performance Index showed excellent concurrent validity with oral SDMT score, good-to-excellent test-retest reliability for remote administration, and excellent discriminant validity in detecting cognitive impairment. Including response speed trends further improved oral SDMT score prediction and detection of cognitive impairment. Response speed improvements correlated with higher scores at gold-standard neuropsychological tests of learning.

CONCLUSIONS

Intra-trial learning metrics can enhance the validity of digital cognitive testing in pwMS. Future research should explore the predictive value of these metrics, particularly in remote and autonomous scenarios. The ability to collect reliable information on multiple cognitive processes in a cost- and time-effective manner via digital testing could significantly improve both clinical care and research.

摘要

背景

多发性硬化症(MS)常导致认知障碍,严重影响功能独立性。符号数字模式测验(SDMT)是筛查和监测MS患者(pwMS)认知功能的金标准。与传统的纸笔测试相比,电子SDMT(eSDMT)改编版具有远程监测和获取更详细表现指标的潜力。

目的

本研究旨在评估源自经过验证的eSDMT的新指标,以加强对pwMS的认知评估并检测其认知障碍。

方法

我们纳入了93名进行eSDMT的pwMS患者,该测试能够自动收集单刺激反应时间(RTs)和反应准确性。我们研究了表现指数——一种基于速度和准确性的评分指标——以及eSDMT任务期间个体RTs的斜率(反映反应速度变化)。我们评估了表现指数的同时效度和重测信度,以及社会人口统计学变量的影响。还探讨了与学习的金标准认知测试(加利福尼亚言语学习测试、简短视觉空间记忆测试)的相关性。分别使用分层线性回归和逻辑回归分析来预测口头SDMT分数和更广泛的认知障碍。

结果

随着eSDMT的进行,参与者的RTs有所改善,反映出试验内的普遍学习。eSDMT表现指数与口头SDMT分数具有出色的同时效度,远程管理的重测信度良好至优秀,并且在检测认知障碍方面具有出色的判别效度。纳入反应速度趋势进一步改善了口头SDMT分数预测和认知障碍检测。反应速度的提高与学习的金标准神经心理学测试中的更高分数相关。

结论

试验内学习指标可提高pwMS数字认知测试的效度。未来的研究应探索这些指标的预测价值​,特别是在远程和自主场景中。通过数字测试以具有成本效益和节省时间的方式收集关于多种认知过程的可靠信息的能力,可显著改善临床护理和研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验