Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, Alameda 340, P.O. 8331150, Santiago, Chile; Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, Av. Las Condes 12438, P.O. 7710162, Lo Barnechea, Santiago, Chile.
Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, Alameda 340, P.O. 8331150, Santiago, Chile; Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
Exp Neurol. 2015 Jul;269:43-55. doi: 10.1016/j.expneurol.2015.03.027. Epub 2015 Apr 7.
During early and late postnatal developments, the establishment of functional neuronal connectivity depends on molecules like Wnt that help the recently formed synapses to establish and consolidate their new cellular interactions. However, unlike other molecules, whether Wnt can modulate the firing properties of cells is unknown. Here, for the first time we explore the physiological effect of the canonical and non-canonical Wnt pathways on a circuit that is currently generating oscillatory activity, the entorhinal cortex-hippocampal circuit. Our results indicate that Wnt pathways have strong influence in the circuital and cellular properties depending on the Wnt protein isoforms, concentration, and type of neuronal circuit. Antibodies against canonical and non-canonical ligands, as well as WASP-1 and sFRP-2, demonstrate that constitutive release of Wnts contributes to the maintenance of the network and intrinsic properties of the circuit. Furthermore, we found that the excess of Wnt3a or the permanent intracellular activation of the pathway with BIO-6 accelerates the period of the oscillation by disrupting the oscillatory units (Up states) in short units, presumably by affecting the synaptic mechanisms that couples neurons into the oscillatory cycle, but without affecting the spike generation. Instead, low doses of Wnt5a increase the period of the oscillation in EC by incorporating new cells into the network activity, probably modifying firing activity in other places of the circuit. Moreover, we found that Wnt signaling operates under different principles in the hippocampus. Using pyrvinium pamoate, a Wnt/β-catenin dependent pathway inhibitor, we demonstrated that this pathway is essential to keep the firing activity in the circuit CA3, and in less degree of CA1 circuit. However, CA1 circuit possesses homeostatic mechanisms to up-regulate the firing activity when it has been suppressed in CA3, and to down-modulate the cellular excitability when exacerbated circuital activity has dominated. In summary, the amount of Wnt that is being released can exert a fine tuning of the physiological output, modulating firing activity, improving reliability of communication between neurons, and maintaining a continuous self-regulatory cycle of synaptic structure-function that can be present during all postnatal life.
在胚胎后期和后期的发育过程中,功能性神经元连接的建立依赖于 Wnt 等分子,这些分子有助于新形成的突触建立和巩固它们新的细胞相互作用。然而,与其他分子不同的是,Wnt 是否可以调节细胞的放电特性尚不清楚。在这里,我们首次探索了经典和非经典 Wnt 途径对当前产生振荡活动的电路(即内嗅皮层-海马电路)的生理影响。我们的结果表明,Wnt 途径对电路和细胞特性有很强的影响,这取决于 Wnt 蛋白同工型、浓度和神经元电路类型。针对经典和非经典配体以及 WASP-1 和 sFRP-2 的抗体表明,Wnt 的组成性释放有助于网络的维持和电路的固有特性。此外,我们发现,过量的 Wnt3a 或通过 BIO-6 永久激活途径会通过破坏短单元中的振荡单元(Up 状态)来加速振荡的周期,可能通过影响将神经元耦合到振荡周期的突触机制,但不影响尖峰产生。相反,低剂量的 Wnt5a 通过将新细胞纳入网络活动来增加 EC 中的振荡周期,可能会改变电路中其他地方的放电活动。此外,我们发现 Wnt 信号在海马体中以不同的原则运作。使用吡咯并嘧啶棕榈酸酯(一种依赖 Wnt/β-catenin 的途径抑制剂),我们证明该途径对于维持 CA3 电路中的放电活动以及在 CA1 电路中的较小程度的放电活动是必不可少的。然而,CA1 电路具有内在的机制,可以在 CA3 中抑制放电活动时上调放电活动,并且在过度的电路活动占主导地位时下调细胞兴奋性。总之,释放的 Wnt 量可以对生理输出进行微调,调节放电活动,提高神经元之间通信的可靠性,并维持突触结构-功能的持续自我调节循环,这种循环可以存在于整个出生后生命中。