Suppr超能文献

锰超氧化物歧化酶与氧化应激调节

Manganese superoxide dismutase and oxidative stress modulation.

作者信息

Bresciani Guilherme, da Cruz Ivana Beatrice Mânica, González-Gallego Javier

机构信息

Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile.

Laboratório de Biogenômica, Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Brazil.

出版信息

Adv Clin Chem. 2015;68:87-130. doi: 10.1016/bs.acc.2014.11.001. Epub 2015 Jan 7.

Abstract

Oxidative stress is characterized by imbalanced reactive oxygen species (ROS) production and antioxidant defenses. Two main antioxidant systems exist. The nonenzymatic system relies on molecules to directly quench ROS and the enzymatic system is composed of specific enzymes that detoxify ROS. Among the latter, the superoxide dismutase (SOD) family is important in oxidative stress modulation. Of these, manganese-dependent SOD (MnSOD) plays a major role due to its mitochondrial location, i.e., the main site of superoxide (O(2)(·-)) production. As such, extensive research has focused on its capacity to modulate oxidative stress. Early data demonstrated the relevance of MnSOD as an O(2)(·-) scavenger. More recent research has, however, identified a prominent role for MnSOD in carcinogenesis. In addition, SOD downregulation appears associated with health risk in heart and brain. A single nucleotide polymorphism which alters the mitochondria signaling sequence for the cytosolic MnSOD form has been identified. Transport into the mitochondria was differentially affected by allelic presence and a new chapter in MnSOD research thus begun. As a result, an ever-increasing number of diseases appear associated with this allelic variation including metabolic and cardiovascular disease. Although diet and exercise upregulate MnSOD, the relationship between environmental and genetic factors remains unclear.

摘要

氧化应激的特征是活性氧(ROS)生成与抗氧化防御失衡。存在两个主要的抗氧化系统。非酶系统依靠分子直接淬灭ROS,而酶系统由使ROS解毒的特定酶组成。在后者中,超氧化物歧化酶(SOD)家族在氧化应激调节中很重要。其中,锰依赖性SOD(MnSOD)因其在线粒体中的定位(即超氧化物(O(2)(·-))产生的主要部位)而发挥主要作用。因此,广泛的研究集中在其调节氧化应激的能力上。早期数据证明了MnSOD作为O(2)(·-)清除剂的相关性。然而,最近的研究发现MnSOD在致癌过程中起重要作用。此外,SOD下调似乎与心脏和大脑的健康风险有关。已鉴定出一种单核苷酸多态性,其改变了胞质MnSOD形式的线粒体信号序列。等位基因的存在对转运到线粒体有不同的影响,MnSOD研究的新篇章由此开启。结果,越来越多的疾病似乎与这种等位基因变异有关,包括代谢和心血管疾病。尽管饮食和运动可上调MnSOD,但环境和遗传因素之间的关系仍不清楚。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验