Suppr超能文献

MAGE:在属性丰富的图中匹配近似模式

MAGE: Matching Approximate Patterns in Richly-Attributed Graphs.

作者信息

Pienta Robert, Tamersoy Acar, Tong Hanghang, Chau Duen Horng

机构信息

College of Computing, Georgia Institute of Technology, Atlanta, GA.

Department of Computer Science, Arizona Sate University, Phoenix, AZ.

出版信息

Proc IEEE Int Conf Big Data. 2014 Oct;2014:585-590. doi: 10.1109/BigData.2014.7004278.

Abstract

Given a large graph with millions of nodes and edges, say a social network where both its nodes and edges have multiple attributes (e.g., job titles, tie strengths), how to quickly find subgraphs of interest (e.g., a ring of businessmen with strong ties)? We present MAGE, a scalable, multicore subgraph matching approach that supports expressive queries over large, richly-attributed graphs. Our major contributions include: (1) MAGE supports graphs with both node and edge attributes (most existing approaches handle either one, but not both); (2) it supports expressive queries, allowing multiple attributes on an edge, wildcards as attribute values (i.e., match permissible values), and attributes with continuous values; and (3) it is scalable, supporting graphs with several hundred million edges. We demonstrate MAGE's effectiveness and scalability via extensive experiments on large real and synthetic graphs, such as a Google+ social network with edges.

摘要

给定一个包含数百万个节点和边的大型图,比如说一个社交网络,其中其节点和边都具有多个属性(例如,职位头衔、关系强度),如何快速找到感兴趣的子图(例如,由关系紧密的商人组成的环)?我们提出了MAGE,一种可扩展的多核子图匹配方法,它支持对大型、属性丰富的图进行表达性查询。我们的主要贡献包括:(1)MAGE支持具有节点和边属性的图(大多数现有方法只处理其中之一,而非两者);(2)它支持表达性查询,允许边具有多个属性、通配符作为属性值(即匹配允许的值)以及具有连续值的属性;(3)它具有可扩展性,支持具有数亿条边的图。我们通过在大型真实和合成图上进行广泛实验,如具有[此处缺失边数量信息]条边的谷歌+社交网络,来证明MAGE的有效性和可扩展性。

相似文献

1
MAGE: Matching Approximate Patterns in Richly-Attributed Graphs.MAGE:在属性丰富的图中匹配近似模式
Proc IEEE Int Conf Big Data. 2014 Oct;2014:585-590. doi: 10.1109/BigData.2014.7004278.
2
A distributed query execution engine of big attributed graphs.一种带属性大图的分布式查询执行引擎。
Springerplus. 2016 May 23;5(1):665. doi: 10.1186/s40064-016-2251-0. eCollection 2016.
4
Querying large graphs in biomedicine with colored graphs and decomposition.用着色图和分解查询生物医学中的大型图
J Biomed Inform. 2020 Aug;108:103503. doi: 10.1016/j.jbi.2020.103503. Epub 2020 Jul 17.
9
Learning on Attribute-Missing Graphs.属性缺失图上的学习
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):740-757. doi: 10.1109/TPAMI.2020.3032189. Epub 2022 Jan 7.
10
Discriminative Feature Selection for Uncertain Graph Classification.用于不确定图分类的判别特征选择
Proc SIAM Int Conf Data Min. 2013;2013:82-93. doi: 10.1137/1.9781611972832.10.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验