Remy Ingrid, Michnick Stephen W
Département de Biochimie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, QC, Canada, H3C 3J7.
Methods Mol Biol. 2015;1278:467-81. doi: 10.1007/978-1-4939-2425-7_31.
Cellular biochemical machineries, what we call pathways, consist of dynamically assembling and disassembling macromolecular complexes. Although our models for the organization of biochemical machines are derived largely from in vitro experiments, do they reflect their organization in intact, living cells? We have developed a general experimental strategy that addresses this question by allowing the quantitative probing of molecular interactions in intact, living cells. The experimental strategy is based on Protein fragment Complementation Assays (PCA), a method whereby protein interactions are coupled to refolding of enzymes from cognate fragments where reconstitution of enzyme activity acts as the detector of a protein interaction. A biochemical machine or pathway is defined by grouping interacting proteins into those that are perturbed in the same way by common factors (hormones, metabolites, enzyme inhibitors, etc.). In this chapter we review some of the essential principles of PCA and provide details and protocols for applications of PCA, particularly in mammalian cells, based on three PCA reporters, dihydrofolate reductase, green fluorescent protein, and β-lactamase.
细胞生化机制,即我们所说的信号通路,由动态组装和解聚的大分子复合物组成。尽管我们关于生化机器组织的模型很大程度上来源于体外实验,但这些模型是否反映了它们在完整活细胞中的组织方式呢?我们开发了一种通用的实验策略,通过对完整活细胞中的分子相互作用进行定量探测来解决这个问题。该实验策略基于蛋白质片段互补分析(PCA),这是一种将蛋白质相互作用与同源片段中酶的重新折叠相偶联的方法,其中酶活性的重建作为蛋白质相互作用的检测器。通过将相互作用的蛋白质分组为那些受到共同因素(激素、代谢物、酶抑制剂等)相同方式干扰的蛋白质,来定义生化机器或信号通路。在本章中,我们回顾了PCA的一些基本原理,并基于三种PCA报告基因——二氢叶酸还原酶、绿色荧光蛋白和β-内酰胺酶,提供了PCA应用的详细信息和方案,特别是在哺乳动物细胞中的应用。