Pérez-Toro Inmaculada, Domínguez-Martín Alicia, Choquesillo-Lazarte Duane, Vílchez-Rodríguez Esther, González-Pérez Josefa María, Castiñeiras Alfonso, Niclós-Gutiérrez Juan
Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain.
J Inorg Biochem. 2015 Jul;148:84-92. doi: 10.1016/j.jinorgbio.2015.03.006. Epub 2015 Mar 23.
Several nucleic acid components and their metal complexes are known to be involved in crucial metabolic steps. Therefore the study of metal-nucleic acid interactions becomes essential to understand these biological processes. In this work, the synthetic purine-like nucleoside acyclovir (acv) has been used as a model of guanosine recognition with copper(II)-polyamine chelates. The chemical stability of the N9-acyclic arm in acv offers the possibility to use this antiviral drug to deepen the knowledge of metal-nucleoside interactions. Cu(II) chelates with cyclam, cyclen and trien were used as suitable receptors. All these copper(II) tetraamine chelates have in common the potential ability to yield a Cu-N7(apical) bond assisted by an appropriate (amine)N-H⋯O6(acv) intra-molecular interligand interaction. A series of synthesis afforded the following compounds: [Cu(cyclam)(ClO4)2] (1), {Cu(cyclam)(μ2-NO3)}n (2), {[Cu(cyclam)(μ2-SO4)]·MeOH}n (3), {[Cu(cyclam)(μ2-SO4)]·5H2O}n (4), [Cu(cyclen)(H2O)]SO4·2H2O (5), [Cu(cyclen)(H2O)]SO4·3H2O (6), Cu(trien)(acv)2·acv (7) and [Cu(trien)(acv)]SO4·0.71H2O (8). All these compounds have been characterized by X-ray crystallography and FT-IR spectroscopy. Our results reveal that the macrochelates Cu(cyclen)(2+) and Cu(cyclam)(2+) are unable to bind acv at an apical site. In contrast, the Cu(trien)(2+) complex has proved to be an efficient receptor for acv in compounds (7) and (8). In the ternary complex Cu(trien)(acv), the metal binding pattern of acv consists of an apical Cu-N7 bond assisted by an intra-molecular (primary amino)N-H⋯O6(acv) interligand interaction. Structural comparisons reveal that this unprecedented apical role of acv is due to the acyclic nature of trien together with the ability of the Cu(trien)(2+) chelate to generate five-coordinated (type 4+1) copper(II) complexes.
已知几种核酸成分及其金属配合物参与关键的代谢步骤。因此,研究金属 - 核酸相互作用对于理解这些生物过程至关重要。在这项工作中,合成的嘌呤样核苷阿昔洛韦(acv)已被用作鸟苷与铜(II) - 多胺螯合物识别的模型。阿昔洛韦中N9 - 无环臂的化学稳定性为利用这种抗病毒药物加深对金属 - 核苷相互作用的认识提供了可能性。与环四胺、环六胺和三亚乙基四胺形成的铜(II)螯合物被用作合适的受体。所有这些铜(II)四胺螯合物的共同潜在能力是,在适当的(胺)N - H⋯O6(acv)分子内配体间相互作用的辅助下,形成Cu - N7(顶端)键。一系列合成反应得到了以下化合物:[Cu(环四胺)(高氯酸根)₂](1),{[Cu(环四胺)(μ₂ - 硝酸根)](硝酸根)}ₙ(2),{[Cu(环四胺)(μ₂ - 硫酸根)]·甲醇}ₙ(3),{[Cu(环四胺)(μ₂ - 硫酸根)]·5H₂O}ₙ(4),[Cu(环六胺)(水)]硫酸根·2H₂O(5),[Cu(环六胺)(水)]硫酸根·3H₂O(6),[Cu(三亚乙基四胺)(阿昔洛韦)](硝酸根)₂·阿昔洛韦(7)和[Cu(三亚乙基四胺)(阿昔洛韦)]硫酸根·0.71H₂O(8)。所有这些化合物均通过X射线晶体学和傅里叶变换红外光谱进行了表征。我们的结果表明,大环螯合物Cu(环六胺)(2 +)和Cu(环四胺)(2 +)无法在顶端位点结合阿昔洛韦。相比之下,已证明Cu(三亚乙基四胺)(2 +)配合物在化合物(7)和(8)中是阿昔洛韦的有效受体。在三元配合物[Cu(三亚乙基四胺)(阿昔洛韦)](2 +)中,阿昔洛韦的金属结合模式由分子内(伯氨基)N - H⋯O6(阿昔洛韦)配体间相互作用辅助的顶端Cu - N7键组成。结构比较表明,阿昔洛韦这种前所未有的顶端作用是由于三亚乙基四胺的无环性质以及Cu(三亚乙基四胺)(2 +)螯合物生成五配位(4 + 1型)铜(II)配合物的能力。