Suppr超能文献

肺炎衣原体促进胰腺β细胞功能障碍。

Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.

作者信息

Rodriguez Annette R, Plascencia-Villa Germán, Witt Colleen M, Yu Jieh-Juen, José-Yacamán Miguel, Chambers James P, Perry George, Guentzel M Neal, Arulanandam Bernard P

机构信息

RCMI Biophotonics Core, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States.

RCMI Nanotechnology and Human Health Core, Department of Physics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States.

出版信息

Cell Immunol. 2015 Jun;295(2):83-91. doi: 10.1016/j.cellimm.2015.03.010. Epub 2015 Apr 1.

Abstract

The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.

摘要

人类病原体肺炎衣原体与包括2型糖尿病在内的慢性炎症性疾病有关。因此,我们设计了一项研究来评估衣原体感染期间的胰腺β细胞和肥大细胞。我们的研究表明,与与β细胞共培养的未感染肥大细胞相比,肺炎衣原体感染的肥大细胞显著(p<0.005)降低了β细胞的三磷酸腺苷(ATP)和胰岛素生成。受感染的肥大细胞表现出核固缩以及活性半胱天冬酶-3和半胱天冬酶-1的表达。此外,对从肺炎衣原体感染小鼠收集的组织进行的体外分析显示,脾细胞和胰腺组织中白细胞介素-1β的生成增加,这与肺炎衣原体感染期间体外肥大细胞与β细胞共培养时观察到的情况一致。值得注意的是,受感染的肥大细胞促进了β细胞的破坏。我们的研究结果揭示了肺炎衣原体对肥大细胞产生的负面影响,以及对胰腺β细胞功能和活力的相应影响。

相似文献

1
Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.
Cell Immunol. 2015 Jun;295(2):83-91. doi: 10.1016/j.cellimm.2015.03.010. Epub 2015 Apr 1.
2
Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae.
Eur J Immunol. 2002 Sep;32(9):2460-70. doi: 10.1002/1521-4141(200209)32:9<2460::AID-IMMU2460>3.0.CO;2-M.
3
Clearance of Chlamydia pneumoniae infection in H-2 class I human leucocyte antigen-A2.1 monochain transgenic mice.
Scand J Immunol. 2005 Aug;62(2):131-9. doi: 10.1111/j.1365-3083.2005.01645.x.
4
Chlamydia pneumoniae and atherosclerosis: the role of mast cells.
J Biol Regul Homeost Agents. 2009 Apr-Jun;23(2):65-9.
6
Mast cells play an important role in chlamydia pneumoniae lung infection by facilitating immune cell recruitment into the airway.
J Immunol. 2015 Apr 15;194(8):3840-51. doi: 10.4049/jimmunol.1402685. Epub 2015 Mar 9.
7
Pro-atherogenic lung and oral pathogens induce an inflammatory response in human and mouse mast cells.
J Cell Mol Med. 2009 Jan;13(1):103-13. doi: 10.1111/j.1582-4934.2008.00285.x.
8
Chlamydia, inflammation, and atherogenesis.
J Infect Dis. 2000 Jun;181 Suppl 3:S492-7. doi: 10.1086/315618.
10
Chlamydia pneumoniae infection in IL-10 knock out mice: accelerated clearance but severe pulmonary inflammatory response.
Microb Pathog. 2008 Jul;45(1):25-9. doi: 10.1016/j.micpath.2008.02.004. Epub 2008 Apr 1.

引用本文的文献

1
Excessive or sustained endoplasmic reticulum stress: one of the culprits of adipocyte dysfunction in obesity.
Ther Adv Endocrinol Metab. 2024 Oct 7;15:20420188241282707. doi: 10.1177/20420188241282707. eCollection 2024.
2
Non-Coding RNA as Biomarkers for Type 2 Diabetes Development and Clinical Management.
Front Endocrinol (Lausanne). 2021 Sep 17;12:630032. doi: 10.3389/fendo.2021.630032. eCollection 2021.
3
Infection and Inflammatory Diseases.
For Immunopathol Dis Therap. 2016;7(3-4):237-254. doi: 10.1615/ForumImmunDisTher.2017020161.
4
It's Never Too Early or Too Late-End the Epidemic of Alzheimer's by Preventing or Reversing Causation From Pre-birth to Death.
Front Aging Neurosci. 2018 Jul 12;10:205. doi: 10.3389/fnagi.2018.00205. eCollection 2018.
5
Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes.
BMC Med. 2017 Jul 19;15(1):131. doi: 10.1186/s12916-017-0901-x.

本文引用的文献

1
Higher titers of anti-Chlamydia pneumoniae IgG in diabetic retinopathy: a cross-sectional study.
Diabetes Metab Res Rev. 2015 Feb;31(2):168-74. doi: 10.1002/dmrr.2581. Epub 2014 Sep 14.
4
Activation of inflammasome signaling mediates pathology of acute P. aeruginosa pneumonia.
J Clin Invest. 2013 Apr;123(4):1630-7. doi: 10.1172/JCI66142. Epub 2013 Mar 8.
5
Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis.
J Immunol. 2012 Jun 1;188(11):5604-11. doi: 10.4049/jimmunol.1200039. Epub 2012 Apr 23.
6
Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010.
JAMA. 2012 Feb 1;307(5):491-7. doi: 10.1001/jama.2012.39. Epub 2012 Jan 17.
7
The inflammasome: an integrated view.
Immunol Rev. 2011 Sep;243(1):136-51. doi: 10.1111/j.1600-065X.2011.01046.x.
8
Increased TLR2 expression in patients with type 1 diabetes: evidenced risk of microalbuminuria.
Pediatr Diabetes. 2012 Mar;13(2):147-54. doi: 10.1111/j.1399-5448.2011.00794.x. Epub 2011 Aug 17.
10
Type 2 diabetes as an inflammatory disease.
Nat Rev Immunol. 2011 Feb;11(2):98-107. doi: 10.1038/nri2925. Epub 2011 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验