Verfaillie Annelien, Imrichova Hana, Atak Zeynep Kalender, Dewaele Michael, Rambow Florian, Hulselmans Gert, Christiaens Valerie, Svetlichnyy Dmitry, Luciani Flavie, Van den Mooter Laura, Claerhout Sofie, Fiers Mark, Journe Fabrice, Ghanem Ghanem-Elias, Herrmann Carl, Halder Georg, Marine Jean-Christophe, Aerts Stein
Laboratory of Computational Biology, Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium.
1] Laboratory for Molecular Cancer Biology, Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium [2] VIB Center for the Biology of Disease, 3000 Leuven, Belgium.
Nat Commun. 2015 Apr 9;6:6683. doi: 10.1038/ncomms7683.
Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.
将增殖性黑色素瘤细胞转录重编程为表型上不同的侵袭性细胞亚群是转移扩散起源的关键事件。在这里,我们生成了黑色素瘤培养物的转录组、开放染色质和组蛋白修饰图谱;并将这些数据与来自肿瘤活检的现有转录组和DNA甲基化谱整合,以深入了解这一关键重编程事件背后的机制。这显示了数千个增殖和侵袭状态下的基因组调控区域,分别确定SOX10/MITF和AP-1/TEAD为调控因子。敲低TEADs显示其在侵袭基因网络中具有以前未被认识的作用,并在这些转录因子、细胞侵袭和对MAPK抑制剂的敏感性之间建立了因果联系。利用调控图谱和计算机分析,我们表明转录重编程是黑色素瘤中不同细胞状态的基础。此外,它揭示了TEADs的重要作用,将其与侵袭和耐药等临床相关机制联系起来。