Catici Dragana A M, Horne James E, Cooper Grace E, Pudney Christopher R
From the Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom.
From the Department of Biology and Biochemistry, Faculty of Science, University of Bath, Bath BA2 7AY, United Kingdom
J Biol Chem. 2015 May 29;290(22):14130-9. doi: 10.1074/jbc.M115.640417. Epub 2015 Apr 12.
The NF-κB essential modulator (NEMO) is the master regulator of NF-κB signaling, controlling the immune and nervous systems. NEMO affects the activity of IκB kinase-β (IKKβ), which relieves the inhibition of the NF-κB transcriptional regulation machinery. Despite major effort, there is only a very sparse, phenomenological understanding of how NEMO regulates IKKβ and shows specificity in its large range of molecular interactions. We explore the key molecular interactions of NEMO using a molecular biophysics approach, incorporating rapid-mixing stopped-flow, high-pressure, and CD spectroscopies. Our study demonstrates that NEMO has a significant degree of native structural disorder and that molecular flexibility and ligand-induced conformational change are at the heart of the molecular interactions of NEMO. We found that long chain length, unanchored, linear polyubiquitin drives NEMO activity, enhancing the affinity of NEMO for IKKβ and the kinase substrate IκBα and promoting membrane association. We present evidence that unanchored polyubiquitin achieves this regulation by inducing NEMO conformational change by an allosteric mechanism. We combine our quantitative findings to give a detailed molecular mechanistic model for the activity of NEMO, providing insight into the molecular mechanism of NEMO activity with broad implications for the biological role of free polyubiquitin.
核因子κB必需调节蛋白(NEMO)是核因子κB信号通路的主要调节因子,控制着免疫系统和神经系统。NEMO影响IκB激酶-β(IKKβ)的活性,从而解除对核因子κB转录调控机制的抑制。尽管付出了巨大努力,但对于NEMO如何调节IKKβ以及在其广泛的分子相互作用中表现出特异性,目前仅有非常有限的、基于现象学的认识。我们采用分子生物物理学方法,结合快速混合停流、高压和圆二色光谱学,探索NEMO的关键分子相互作用。我们的研究表明,NEMO具有显著程度的天然结构无序,分子柔性和配体诱导的构象变化是NEMO分子相互作用的核心。我们发现,长链、未锚定的线性多聚泛素驱动NEMO的活性,增强NEMO对IKKβ和激酶底物IκBα的亲和力,并促进膜结合。我们提供的证据表明,未锚定的多聚泛素通过变构机制诱导NEMO构象变化来实现这种调节。我们结合定量研究结果,给出了一个关于NEMO活性的详细分子机制模型,深入了解了NEMO活性的分子机制,对游离多聚泛素的生物学作用具有广泛的意义。