Suppr超能文献

HIPK2缺陷通过胞质分裂失败导致染色体不稳定并增加肿瘤发生能力。

HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity.

作者信息

Valente Davide, Bossi Gianluca, Moncada Alice, Tornincasa Mara, Indelicato Stefania, Piscuoglio Salvatore, Karamitopoulou Eva Diamantis, Bartolazzi Armando, Pierantoni Giovanna Maria, Fusco Alfredo, Soddu Silvia, Rinaldo Cinzia

机构信息

Experimental Oncology Laboratory, Regina Elena National Cancer Institute, Rome, Italy.

Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome, Italy.

出版信息

Oncotarget. 2015 Apr 30;6(12):10320-34. doi: 10.18632/oncotarget.3583.

Abstract

HIPK2, a cell fate decision kinase inactivated in several human cancers, is thought to exert its oncosuppressing activity through its p53-dependent and -independent apoptotic function. However, a HIPK2 role in cell proliferation has also been described. In particular, HIPK2 is required to complete cytokinesis and impaired HIPK2 expression results in cytokinesis failure and tetraploidization. Since tetraploidy may yield to aneuploidy and chromosomal instability (CIN), we asked whether unscheduled tetraploidy caused by loss of HIPK2 might contribute to tumorigenicity. Here, we show that, compared to Hipk2+/+ mouse embryo fibroblasts (MEFs), hipk2-null MEFs accumulate subtetraploid karyotypes and develop CIN. Accumulation of these defects inhibits proliferation and spontaneous immortalization of primary MEFs whereas increases tumorigenicity when MEFs are transformed by E1A and Harvey-Ras oncogenes. Upon mouse injection, E1A/Ras-transformed hipk2-null MEFs generate tumors with genetic alterations resembling those of human cancers derived by initial tetraploidization events, such as pancreatic adenocarcinoma. Thus, we evaluated HIPK2 expression in different stages of pancreatic transformation. Importantly, we found a significant correlation among reduced HIPK2 expression, high grade of malignancy, and high nuclear size, a marker of increased ploidy. Overall, these results indicate that HIPK2 acts as a caretaker gene, whose inactivation increases tumorigenicity and causes CIN by cytokinesis failure.

摘要

HIPK2是一种在多种人类癌症中失活的细胞命运决定激酶,被认为通过其依赖p53和不依赖p53的凋亡功能发挥抑癌活性。然而,也有研究描述了HIPK2在细胞增殖中的作用。特别是,完成胞质分裂需要HIPK2,HIPK2表达受损会导致胞质分裂失败和四倍体化。由于四倍体可能导致非整倍体和染色体不稳定(CIN),我们不禁要问,HIPK2缺失导致的意外四倍体是否会促进肿瘤发生。在这里,我们发现,与Hipk2+/+小鼠胚胎成纤维细胞(MEF)相比,hipk2基因敲除的MEF积累亚四倍体核型并出现CIN。这些缺陷的积累会抑制原代MEF的增殖和自发永生化,而当MEF被E1A和哈维-拉斯癌基因转化时,会增加其致瘤性。给小鼠注射后,E1A/Ras转化的hipk2基因敲除的MEF产生的肿瘤具有与最初四倍体化事件衍生的人类癌症相似的基因改变,如胰腺腺癌。因此,我们评估了胰腺转化不同阶段的HIPK2表达。重要的是,我们发现HIPK2表达降低、高恶性程度和高核大小(多倍体增加的标志物)之间存在显著相关性。总体而言,这些结果表明HIPK2作为一个维持基因组稳定性的基因,其失活会增加肿瘤发生并通过胞质分裂失败导致CIN。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c06/4496358/3a2a0ae2bb68/oncotarget-06-10320-g001.jpg

相似文献

1
HIPK2 deficiency causes chromosomal instability by cytokinesis failure and increases tumorigenicity.
Oncotarget. 2015 Apr 30;6(12):10320-34. doi: 10.18632/oncotarget.3583.
2
HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody.
Mol Cell. 2012 Jul 13;47(1):87-98. doi: 10.1016/j.molcel.2012.04.029. Epub 2012 May 31.
3
HIPK2 and extrachromosomal histone H2B are separately recruited by Aurora-B for cytokinesis.
Oncogene. 2018 Jun;37(26):3562-3574. doi: 10.1038/s41388-018-0191-6. Epub 2018 Mar 22.
6
HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis.
Bioessays. 2013 Jan;35(1):55-64. doi: 10.1002/bies.201200060. Epub 2012 Nov 21.
7
N-terminal truncation of Lats1 causes abnormal cell growth control and chromosomal instability.
J Cell Sci. 2013 Jan 15;126(Pt 2):508-20. doi: 10.1242/jcs.113431. Epub 2012 Dec 10.
8
CDKL5 localizes at the centrosome and midbody and is required for faithful cell division.
Sci Rep. 2017 Jul 24;7(1):6228. doi: 10.1038/s41598-017-05875-z.
10

引用本文的文献

1
Inactivation of HIPK2 attenuates KRAS activity and prevents pancreatic tumorigenesis.
J Exp Clin Cancer Res. 2024 Sep 28;43(1):265. doi: 10.1186/s13046-024-03189-3.
2
A novel entity of HIPK2::YAP1 pulmonary fibromatosis.
BMC Pulm Med. 2024 May 7;24(1):223. doi: 10.1186/s12890-024-03026-5.
3
The Sweet Side of HIPK2.
Cancers (Basel). 2023 May 9;15(10):2678. doi: 10.3390/cancers15102678.
5
Phenotypic Effects of Homeodomain-Interacting Protein Kinase 2 Deletion in Mice.
Int J Mol Sci. 2021 Aug 2;22(15):8294. doi: 10.3390/ijms22158294.
6
7
Evolution of late-stage metastatic melanoma is dominated by aneuploidy and whole genome doubling.
Nat Commun. 2021 Mar 4;12(1):1434. doi: 10.1038/s41467-021-21576-8.
8
HIPK2 Is Required for Midbody Remnant Removal Through Autophagy-Mediated Degradation.
Front Cell Dev Biol. 2020 Sep 15;8:572094. doi: 10.3389/fcell.2020.572094. eCollection 2020.

本文引用的文献

1
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Cell. 2014 Aug 14;158(4):833-848. doi: 10.1016/j.cell.2014.06.029.
2
Integration of stress signals by homeodomain interacting protein kinases.
Biol Chem. 2014 Apr;395(4):375-86. doi: 10.1515/hsz-2013-0264.
3
Aneuploidy in health, disease, and aging.
J Cell Biol. 2013 Apr 1;201(1):11-21. doi: 10.1083/jcb.201301061.
4
HIPK2: A tumour suppressor that controls DNA damage-induced cell fate and cytokinesis.
Bioessays. 2013 Jan;35(1):55-64. doi: 10.1002/bies.201200060. Epub 2012 Nov 21.
5
An immunosurveillance mechanism controls cancer cell ploidy.
Science. 2012 Sep 28;337(6102):1678-84. doi: 10.1126/science.1224922.
6
Doubling the deck: Tetraploidy induces chromosome shuffling and cancer.
Cell Cycle. 2012 Sep 15;11(18):3354-5. doi: 10.4161/cc.21850. Epub 2012 Aug 23.
7
Tetraploid cancer cell precursors in ovarian carcinoma.
Cell Cycle. 2012 Sep 1;11(17):3157-8. doi: 10.4161/cc.21722. Epub 2012 Aug 16.
8
Updates on HIPK2: a resourceful oncosuppressor for clearing cancer.
J Exp Clin Cancer Res. 2012 Aug 13;31(1):63. doi: 10.1186/1756-9966-31-63.
9
HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody.
Mol Cell. 2012 Jul 13;47(1):87-98. doi: 10.1016/j.molcel.2012.04.029. Epub 2012 May 31.
10
A redox-regulated SUMO/acetylation switch of HIPK2 controls the survival threshold to oxidative stress.
Mol Cell. 2012 May 25;46(4):472-83. doi: 10.1016/j.molcel.2012.03.003. Epub 2012 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验