Suppr超能文献

尿液的荧光分析及其在卵巢癌筛查中的潜力。

Fluorescence analysis of urine and its potential for ovarian cancer screening.

作者信息

Martinicky D, Zvarik M, Sikurova L, Lajdova I, Hunakova L

出版信息

Neoplasma. 2015;62(3):500-6. doi: 10.4149/neo_2015_060.

Abstract

Early diagnosis of ovarian cancer could lead to decreased mortality. We assessed the possible use of urine autofluorescence analysis in its diagnostics and screening.We analysed urine from 42 healthy volunteers, 35 patients with benign, and 36 patients with malignant ovarian tumors. Synchronous fluorescence spectra with a 70 nm wavelength difference were recorded for (1:1 - 1:1024) urine dilutions. Concentration matrices of synchronous spectra (CMSS) were used to classify samples into tested groups.CMSS analysis allowed us to distinguish patients with malignant tumors from healthy ones with a high sensitivity (91.67 %) and specificity (100 %), a positive predictive value (PPV) 100 % and a negative predictive value (NPV) 93.33 %. However, discrimination between benign and malignant ovarian tumors was weaker, with sensitivity 86.11 %, specificity 77.14 %, PPV 79.49 % and NPV 84.38 %. Fluorescence intensity and the position of peaks at 330 and 360 nm were found to be associated with the grade and stage, suggesting that different fluorescent metabolites may prevail at different stages of the disease.CMSS analysis of urine provides an alternative for ovarian cancer screening method development and could be used as a diagnostic test to detect the recurrence of the disease after therapy.

摘要

卵巢癌的早期诊断可降低死亡率。我们评估了尿液自发荧光分析在其诊断和筛查中的可能用途。我们分析了42名健康志愿者、35名患有良性卵巢肿瘤的患者以及36名患有恶性卵巢肿瘤的患者的尿液。对(1:1 - 1:1024)尿液稀释液记录了波长差为70 nm的同步荧光光谱。使用同步光谱浓度矩阵(CMSS)将样本分类到测试组中。CMSS分析使我们能够以高灵敏度(91.67%)、特异性(100%)、阳性预测值(PPV)100%和阴性预测值(NPV)93.33%将恶性肿瘤患者与健康人区分开来。然而,良性和恶性卵巢肿瘤之间的区分较弱,灵敏度为86.11%,特异性为77.14%,PPV为79.49%,NPV为84.38%。发现荧光强度以及330和360 nm处峰值的位置与肿瘤分级和分期相关,这表明在疾病的不同阶段可能存在不同的荧光代谢物。尿液的CMSS分析为卵巢癌筛查方法的开发提供了一种替代方法,并且可以用作检测治疗后疾病复发的诊断测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验