Suppr超能文献

由非线性薛定谔层级的五次方程所描述的呼吸子到孤子的转换。

Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy.

作者信息

Chowdury A, Kedziora D J, Ankiewicz A, Akhmediev N

机构信息

Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2600, Australia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032928. doi: 10.1103/PhysRevE.91.032928. Epub 2015 Mar 30.

Abstract

We analyze the quintic integrable equation of the nonlinear Schrödinger hierarchy that includes fifth-order dispersion with matching higher-order nonlinear terms. We show that a breather solution of this equation can be converted into a nonpulsating soliton solution on a background. We calculate the locus of the eigenvalues on the complex plane which convert breathers into solitons. This transformation does not have an analog in the standard nonlinear Schrödinger equation. We also study the interaction between the new type of solitons, as well as between breathers and these solitons.

摘要

我们分析了非线性薛定谔层级中的五次可积方程,该方程包含具有匹配高阶非线性项的五阶色散。我们表明,此方程的一个呼吸子解可以在背景上转换为非脉动孤子解。我们计算了在复平面上能将呼吸子转换为孤子的特征值轨迹。这种变换在标准非线性薛定谔方程中没有类似情况。我们还研究了新型孤子之间以及呼吸子与这些孤子之间的相互作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验