Chowdury A, Kedziora D J, Ankiewicz A, Akhmediev N
Optical Sciences Group, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2600, Australia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Mar;91(3):032928. doi: 10.1103/PhysRevE.91.032928. Epub 2015 Mar 30.
We analyze the quintic integrable equation of the nonlinear Schrödinger hierarchy that includes fifth-order dispersion with matching higher-order nonlinear terms. We show that a breather solution of this equation can be converted into a nonpulsating soliton solution on a background. We calculate the locus of the eigenvalues on the complex plane which convert breathers into solitons. This transformation does not have an analog in the standard nonlinear Schrödinger equation. We also study the interaction between the new type of solitons, as well as between breathers and these solitons.
我们分析了非线性薛定谔层级中的五次可积方程,该方程包含具有匹配高阶非线性项的五阶色散。我们表明,此方程的一个呼吸子解可以在背景上转换为非脉动孤子解。我们计算了在复平面上能将呼吸子转换为孤子的特征值轨迹。这种变换在标准非线性薛定谔方程中没有类似情况。我们还研究了新型孤子之间以及呼吸子与这些孤子之间的相互作用。