†Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, United States.
‡Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
ACS Nano. 2015 May 26;9(5):5135-42. doi: 10.1021/acsnano.5b00435. Epub 2015 Apr 20.
Nickel(II) oxide (NiO) is an important wide gap p-type semiconductor used as a hole transport material for dye sensitized solar cells and as a water oxidation electrocatalyst. Here we demonstrate that nanocrystals of the material have increased p-type character and improved photocatalytic activity for hydrogen evolution from water in the presence of methanol as sacrificial electron donor. NiO nanocrystals were synthesized by hydrolysis of Ni(II) nitrate under hydrothermal conditions followed by calcination in air. The crystals have the rock salt structure type and adopt a plate-like morphology (50-90 nm × 10-15 nm). Diffuse reflectance absorbance spectra indicate a band gap of 3.45 eV, similar to bulk NiO. Photoelectrochemical measurements were performed at neutral pH with methylviologen as electron acceptor, revealing photo-onset potentials (Fermi energies) of 0.2 and 0.05 eV (NHE) for nanoscale and bulk NiO, respectively. Nano-NiO and NiO-Pt composites obtained by photodepositon of H2PtCl6 catalyze hydrogen evolution from aqueous methanol at rates of 0.8 and 4.5 μmol H2 h(-1), respectively, compared to 0.5 and 2.1 μmol H2 h(-1) for bulk-NiO and NiO-Pt (20 mg of catalyst, 300 W Xe lamp). Surface photovoltage spectroscopy of NiO and NiO-Pt films on Au substrates indicate a metal Pt-NiO junction with 30 mV photovoltage that promotes carrier separation. The increased photocatalytic and photoelectrochemical performance of nano-NiO is due to improved minority carrier extraction and increased p-type character, as deduced from Mott-Schottky plots, optical absorbance, and X-ray photoelectron spectroscopy data.
氧化镍(NiO)是一种重要的宽禁带 p 型半导体,可用作染料敏化太阳能电池的空穴传输材料和水氧化电催化剂。在这里,我们证明了该材料的纳米晶具有增强的 p 型特性和提高的光催化活性,可在甲醇作为牺牲电子给体的情况下从水中光解制氢。NiO 纳米晶通过 Ni(II)硝酸盐在水热条件下水解,然后在空气中煅烧合成。这些晶体具有岩盐结构类型,并采用片状形态(50-90nm×10-15nm)。漫反射吸收光谱表明带隙为 3.45eV,与体相 NiO 相似。在中性 pH 条件下进行光电化学测量,以甲基紫精作为电子受体,发现纳米级和体相 NiO 的光起始电位(费米能级)分别为 0.2 和 0.05eV(NHE)。通过光沉积 H2PtCl6 获得的纳米 NiO 和 NiO-Pt 复合材料分别在水甲醇中光催化制氢的速率为 0.8 和 4.5μmolH2h-1,而体相-NiO 和 NiO-Pt 的速率分别为 0.5 和 2.1μmolH2h-1(20mg 催化剂,300W Xe 灯)。Au 衬底上的 NiO 和 NiO-Pt 薄膜的表面光电压谱表明,金属 Pt-NiO 结具有 30mV 的光电压,可促进载流子分离。纳米 NiO 的光催化和光电化学性能的提高归因于少数载流子提取的改善和 p 型特性的增强,这可以从 Mott-Schottky 图、光学吸收和 X 射线光电子能谱数据中推断出来。